Exploring Multivariate Event Sequences using Rules, Aggregations, and Selections

Bram C.M. Cappers and Jarke J. van Wijk

1 INTRODUCTION

Many domains nowadays try to gain insight in complex phenomena by logging their behavior. Telecom companies for instance analyze their communication networks for the presence of fraud, hospitals analyze patient treatments to discover bottlenecks in the process, and companies study their work flows to improve customer satisfaction. The common ground here is that domains are interested in the analysis of sequences (e.g., phone calls, treatments, work flows) in their system by recording events. Without loss of generality, we define a sequence (a.k.a. trace, record, session, case, or conversation) as a series of events that have the same sequence_id. Besides their type and temporal information, events often have more associated information (e.g., status code, source, length etc.) depending on the domain. In addition, the number of events in real-world data is typically in the order of millions and more.

Multivariate event sequence exploration is still a challenge due to size and variety. Current methods often limit the analysis of event sequences to a single attribute without considering other multivariate event properties in the definition of patterns. We believe however that for root-cause analysis of anomalous sequences the two should be explored simultaneously, since values in multivariate data are often crucial to understand patterns in sequences and vice versa. For example, although sequences of requesting, accessing, and modifying a file in general are not suspicious, they can be considered malicious when they are requested by a particular group of users, the type of file is invalid, and/or one or more authentication errors occurred throughout the execution. For this we need to be able to incorporate multivariate data of events and sequences in our sequential analysis. The observation for instance that all request events in anomalous sequences share particular characteristics in one or more attributes can help analysts to gain insight in the underlying problem.

To enable simultaneous exploration of attributes and event sequences, our exploration method focuses on a user-oriented approach where the
inspection of selections of interest, creation of rules and reinterpretation of event sequences according to these rules play a central role. To support this flexibility we introduce Eventpad, a notepad editor for multivariate event data. More specifically, our main contributions are:

- an exploration method that enables users to simultaneously explore and analyze multivariate event sequences on both multivariate data and sequential level, using
- a glyph-oriented visual query interface to define higher level patterns using multivariate regular expressions,
- a uniform interaction scheme for the creation and modification of selections of interest across events and attributes, and
- a tightly coupled dual view for the discovery of overlap and anomalies between event sequences through interactive multiple sequence alignment and sequence reordering.

The paper is structured as follows. First, related work is discussed in Section 2. Next, we describe our data model and approach to multivariate event sequence exploration in Section 3. Sections 4, 5, and 6 present an overview of the system and discuss design decisions with respect to visualization, data manipulation, and interaction. In Sections 7 and 8 we provide two example explorations on real-world data sets and discuss the limitations of the approach. Finally, conclusions and future work are presented in Section 9.

2 RELATED WORK
Event sequence exploration is an extensively studied topic covering a wide range of visualization techniques. The most well-known method to visualize event sequences is by representing events as glyphs based on their type and point (or interval) in time [8, 11, 12, 22]. To enable exploration in event sequence analysis across different tasks [7], most systems enable users to perform operations on events and sequences such as grouping, aligning, searching, sorting, and filtering [46].

Event sequence exploration methods can be grouped into two main categories: exploration through overview or through pattern searching.

2.1 Event Overview
An overview is often obtained by showing events using icicle plots [4, 24, 47], state diagrams [48], pixel maps [9], “piano roll” glyph displays [12], or networks [36]. As opposed to the visualization of all event sequences, other approaches focus on the visualization of similarities [30] or differences between sequences, such as MatrixWave [50]. In order to cope with large data volumes, many overview techniques provide filtering and clustering capabilities to reduce visual complexity.

A common approach for event visualizations is to visually encode events according to their type. In case of a large number of event types, this encoding is limited to the most frequent types in the data. Event types are important, but for detailed analysis often multiple attributes have to be taken into account to highlight relevant events. Hence, we aim for an alternative approach where we, similar to Tominski [41] and Bernard et al. [5], enable users to visually annotate and simplify [19, 25] the data that at that moment are relevant for their analysis. To support this we enable users to specify rules.

2.2 Event Searching
Various visual search interfaces have been developed for the construction of time-interval based queries [14, 35], regular expressions [3], analysis of cohort selections [23], and web session logs [26]. A query interface closest to Eventpad is the (s)qu(eries) [49]. The (s)qu(eries) system enables users to visually construct regular expressions on multivariate data associated to events. Users can drag and drop multivariate constraints as blocks in a node-link diagram to build their query of interest. More complex regular expressions can be obtained by adding operators to the blocks and connecting them sequentially via edges. (s)qu(eries) is a query-driven system that is effective for finding known patterns of interest. For the specification of queries however, users need to be well aware of the available attribute space, since (besides searching) there is no other support for event sequence exploration and attribute analysis.

2.3 Event Exploration
An exploration method both supporting overview and search mechanisms and close to our technique is EventFlow [33]. EventFlow is an extensive tool for the exploration and analysis of large event collections. Custom interfaces are provided to intuitively search, filter, categorize, align, and simplify [34] events based on type, timestamps, and time intervals. Although the system provides extensive support for event analysis by their type and temporal information, Monroe et al. indicate that the system provides little support for the analysis of additional multivariate data [33]. In addition, they also indicate that comprehensive support across event sequences and attributes is key for temporal event sequence analysis tools to be used in practice. Other techniques try to overcome the problem of multivariate analysis by considering the attributes together as one event type [18]. This approach however does not scale well for high-dimensional data.

Another system for the simultaneous analysis of temporal patterns and multivariate data is ClickStreamVis by Liu et al. [28]. ClickStreamVis enables the analysis of multivariate data in event sequences by extracting frequent sequential patterns from the data using pattern mining techniques. As opposed to existing techniques, ClickStreamVis tries to obtain higher granularity levels by automatically extracting (sub)sequences of interest using motif analysis and various clustering techniques. Unique event sequences are visualized in an icicle plot along with their frequencies. Analysts can align sequences in the visualization according to events in the mined patterns to discover areas of interest. Liu et al. already indicated that their sequence view does not scale well due to the wide variety in large event sequence logs and lack of semantic zooming in their tooling. Furthermore, the computation of mining and pruning maximal sequence patterns can take minutes for relatively small data sets. In Eventpad we tackle wide diversity between event sequences by enabling users to filter or simplify sequences using regular expressions [21]. In addition, users are enabled to store intermediate selections of interest for further investigation. Since the evaluation of a regular expression is linear in the size of the input and its corresponding deterministic finite automaton [2], the technique easily scales to the analysis of hundreds of thousands of events.

In summary, current methods either focus on the sequential analysis of univariate data or the structural analysis of multivariate data. Systems that do take multivariate properties into account during analysis either focus on obtaining an overview or providing search capabilities to explore the data. Currently, no system provides users the ability to both explore and search event sequences by combining temporal patterns and multivariate data in one interface and query language. In addition, no system enables users to interactively explore overlap between sequences of interest alongside attributes using multiple sequence alignment and rule-based event rewriting.

3 EXPLORATION
The size of and variety in large event sequence logs makes it difficult to gain insight in the behavior of the underlying system. Users are not only interested in the existence of particular sequences, but also want to understand what might have caused them. In order to do so, they need to be able to discover which multivariate event properties in these sequences distinguish them from the rest. Since higher level concepts such as a “bad login attempt” or “successful phone call” are typically not captured in low level events, users need to be enabled to enrich their data with these concepts to find the sequences they are interested in. In summary, we need a scalable interactive method to

- inspect event sequence orderings of interest alongside their associated multivariate data,
- assist users in finding and defining sequences of interest, while
- staying aware of high-level phenomena in sequence collections through overview.

In order to keep this method simple and scalable for the analysis of large event logs, we choose for a bottom-up exploration approach
A traditional regular expression consists of symbols with predicate logic to support multiple attributes. Where event sequences are represented by series of glyphs and high-level overviews are obtained by finding and summarizing sequences based on user-defined patterns of interest. To tackle the variety in event logs, we consider the problem at three levels, namely the reduction of complexity:

- within event sequences,
- between event sequences, and
- inside multivariate data (of events of interest).

For this we use three concepts, namely

- rules,
- pattern aggregation, and
- selections.

Rules enable users to simplify and visually encode event sequences using glyphs and regular expressions. Users can apply pattern aggregation to discover overlap between sequentially similar but structurally different sequences by summarizing them using clustering and alignment techniques. The creation of event selections of interest enables users to focus on parts of the event sequences that are relevant for their investigation. Figure 1 shows a schematic overview of how these concepts are used in Eventpad.

In terms of the strategy guidelines of Du et al. [11], Eventpad enables users to extract records and categories (S1,S2), identify features of sequences (S3) or alignments (S4) with the ability to group events by custom defined categories (S9) and coalescing event sequences into new events (S10, S12). Newly defined search patterns can be stored and applied to larger data sets (S14). For a demonstration of the method in practice, we refer to the supplementary video\(^1\).

4 **Rules**

Text editors typically enable text filtering, highlighting, and compression by providing search and replace functionality through regular expressions. Regular expressions are the de facto standard in industry systems such as Elasticsearch [17], Logstash [42], or grep [20] for efficiently finding (and replacing) character sequences in text according to search patterns. Traditional regular expression languages only operate on univariate data such as plain text. We describe how we enable multivariate event sequence analysis by extending regular expressions with predicate logic to support multiple attributes.

4.1 **Formal theory**

A traditional regular expression consists of symbols (i.e., text) and **operators**. In order to extend regular expressions to support multivariate data, we define two types of events, namely **micro** and **macro** events. A microevent \(e\) has (attribute, value) pairs \((a,v)\in A \times V\) where \(a\) represent numerical ranges, strings, or boolean values. In addition, a microevent has a sequence ID. We model a macroevent \(e' = (L, ES)\) where \(L\) is a list of labels and \(ES\) a set of microevents. Initially we assume that every microevent \(e\) is contained in a (default) macroevent \(e'\) with \(L = \{\text{"Gray"}\}\) and \(ES = \{e\}\). We can now model an event sequence as a series of macroevents with the same sequence ID.

Our extended regular expression language consists of **predicates** and **operators**. A predicate is a boolean expression \(B\) over label(s) in \(L\) and/or attribute(s) and value(s) in \(A\) and \(V\). A macroevent \(m\) satisfies \(B\) if and only if all microevents in \(m\) satisfy \(B\). Alternatively, one can require at least one microevent to satisfy \(B\). We refer to this as **maximal versus minimal** matching respectively.

A rule is of the form \(\alpha \rightarrow l\) where \(\alpha\) is a regular expression and \(l\) is a label. Operationally, a rule is fired if an event sequence \(s\) in the data set can match \(\alpha\). This results in the replacement of \(s\) by a new macroevent \(e = (L', ES')\) where \(L' = \{l\}\) and \(ES'\) is the union of all microevents in \(s\). In case of one-to-one mappings, labels in \(s\) are prepended to \(L'\). This enables users to reason about multiple labels when specifying queries (more about this in Section 4.3.)

In contrast to traditional regex, we have to ensure that events before and after the application of a rule remain the same. To keep this mapping simple and intuitive, we limit a rule to the creation of one macroevent. For more details, we refer to the supplementary material.

\(^1\)Video: https://www.youtube.com/watch?v=2DWVW-vLN8Q
Fig. 4. Graphical user interface of the implemented prototype and components: A) Sequence view represents sequences as series of glyphs. Settings with respect to sorting, grouping, and clustering of sequences are set using controls in A) and G). B) The alignment view finds overlap in sequences of interest by aligning them. Alignment parameters, layout and sort settings can be modified in B) and H). C) The attribute view shows trends and patterns in selections on a per-attribute basis. D) Context view enables experts to store selections of interest throughout exploration. E) Rule overview widget to show the coverage of applied rules. F) Rule view shows a list of applied rules along with their settings. The ordering for rewriting is controlled via drag and drop operations. Rules can be toggled on or off along with longest and shortest match settings.

are used to inspect the entire data set. The size of the glyphs can be set proportional to a numeric attribute of choice. Since Eventpad focuses on the reduction and analysis of event patterns, time-intervals between events are disregarded in the visualization.

Users can replace one or more macroevents in sequences by a new one using a rule editor (Figure 3). Traditional regex operators such as sequential composition, choice, and iteration (0 or more times) can be used to construct patterns. Figure 2 shows how these operators are visually encoded in the interface. Similar to Word’s equation editor [32], operators can be combined to construct more complex patterns.

Users can specify a predicate by selecting a glyph of choice. The “Wildcard” glyph corresponds to any label. Double-clicking a glyph in the query interface results in a textual interface (Figure 3). This enables users to specify a predicate over attributes and values in the data. For the right hand side of a rule, users can design their own glyphs by choosing a particular shape, color and/or label (Figure 5). Earlier defined glyphs can be reused for the creation of new rules. In general, rules are used for three purposes (also depicted in Figure 3):

1. filtering,
2. highlighting, and
3. compression.

Filter rules are constructed by rewriting patterns to the empty macroevent and are typically used for data reduction. Highlight rules enable users to visually emphasize events of interest for their investigation, whereas compression rules group collections of events to reduce variety or repetition.

4.3 Rule interaction

In Eventpad, multiple rules can be applied one after each other. Rules are shown in a list (Figure 4F) and applied from top to bottom. The ordering of the rules can be rearranged using drag and drop operations and rules can be toggled on and off to study their effect. Regex rules can match patterns of varying length, e.g., application of the rule \(\text{a} \cdot \text{b} \rightarrow \text{R} \) to a string \(\text{abc} \) can lead to either \(\text{Rc} \) or just \(\text{R} \). Analysts can determine for every rule whether longest or shortest matching should be applied using the rule view.

A direct consequence of our extension to multivariate data is the possibility of having a macroevent adhere to multiple rules at the same time (also referred to as multi-matching). This is for instance the case when two rules specify constraints over two different attributes. In order to make users aware of this, in Eventpad’s sequence view we visualize this overlap by stacking the corresponding glyphs of a macroevent on top of each other. An offset is used to ensure that previous matches are still visible to the user. Users can disable multi-matching to prevent glyphs from being stacked. In this situation, only the glyph of the last obtained macroevent label is shown to the user.

To study the impact of a rule over the data set, an icicle plot is introduced visualizing the fraction of glyphs that are rewritten by the current rule set (Figure 4E). The icicle plot is constructed in the same order as the rules are applied. The order in which the rules occur in the rule view determines the ordering in which the glyphs are stacked.

Besides rules, users can select patterns via a search interface. Users can stack glyphs in the search interface to enforce a macroevent to adhere to more than one rule at the same time. Inversely, the exact operator is used to ensure that macroevents of interest only adhere to the specified visual representation. Figure 6 shows a search dialog where both operators are applied.
With hierarchical clustering sequences of similar length are positioned where call events also originate from the Netherlands. In addition, these call events should be followed by ack events only (i.e., without overlap).

5 PATTERN AGGREGATION

Although rules can significantly reduce the length and complexity of sequences, slight variations between sequences in real-world data are inevitable. In the next sections we describe how we use clustering, alignment, sorting, and partitioning operations to discover patterns between sequences through overview.

5.1 Structural sequence overlap

Depending on the type of rule it is possible for a glyph to represent more than one event. Users are informed about this by placing a red popup in the upper right corner of the glyph showing the number of events it contains. Since this popup does not alter the type of glyph, we decided to exclude this information during sorting and clustering.

Since all sequences typically do not fit on the screen, users can gain better insight in their event log by clustering sequences based on their glyphs representation. This results in a stacked view only showing the unique sequences in the data set based on the currently defined set of rules. The frequency of a sequence is shown textually at the end of every sequence. Stacked sequences can be sorted by frequency to discover generic patterns or outliers. Users can also sort sequences according to various metrics:

- **Default** presents the sequences in the order of the input.
- **Alphabetical** sorts sequences by representing every sequence as a string. The string is obtained by concatenating the labels of glyphs together separated by delimiters.
- **Clustered** sorts sequences by applying single linkage agglomerative hierarchical clustering [13] on the unique event sequences based on Hamming distance.
- **Selected** sorts sequences by their number of currently selected events.

With hierarchical clustering sequences of similar length are positioned close to each other, whereas alphabetical sorts sequences based on their starting sequence. The Hamming distance $d(s_1, s_2)$ between two sequences s_1, s_2 is defined by their number of dissimilar glyphs:

$$
\sum_{1 \leq i \leq \min(\#s_1, \#s_2)} \left(\begin{array}{c} 0, \\
1, \\end{array} \right) + |\#s_1 - \#s_2|,
$$

where $s_1[i]$ represents the i-th macroevent of s_1 and $\#s_1$ its corresponding length. Two macroevents are assumed to be equal if they are rewritten by the same set of rules.

To gain better insight in characteristics of particular sequences, users are enabled to partition sequences according to a sequence attribute of choice. This enables users for instance to inspect event sequences based on their length, duration, or starting time. By default all event sequences are contained in a group called “All” (Figure 5A).

5.2 Sequential sequence overlap

The wide variety in event sequences sometimes makes it difficult to detect potential overlap between them. We believe however that discovering overlap is key to understanding how deviations between sequences may have developed. The alignment view (Figure 4B) enables analysts to generate an overview visualization of event sequences of interest by aggregating them in an icicle plot.

Current alignment methods [44] often focus on the alignment of sequences by the n-th occurrence of an event. In Eventpad, we assist analysts in finding multiple areas of interest through Multiple Sequence Alignment (i.e., MSA). Figure 7 shows the effect of MSA on the traditional icicle plot. MSA is a popular technique in the area of bioinformatics to discover patterns between (fragments of) DNA sequences. As DNA sequences typically show overlap in small fragments of the sequences, they often use MSA algorithms with local optimization. Since we are interested in overlap and differences between entire sequences, we chose for an MSA algorithm focusing on global alignment.

Bose et al. showed the value of applying sequence alignment to gain better insight in event logs [6]. They also indicated the need for interaction to explore patterns in greater detail. In Eventpad analysts are enabled to apply the progressive global MSA algorithm by Bose et al. on event selections of interest to automatically find areas of overlap. Analysts can modify parameter settings such as gap cost to determine the amount of white spacing the MSA is allowed to introduce. Selecting a block in the alignment view results in the selection of its corresponding events in the sequence view. This enables users to select similar events across multiple sequences with a single click of a button.

6 SELECTIONS

Pattern aggregation enables users to perform high-level comparisons, but does not enable the inspection and comparison of multivariate data outside the scope of rules. In addition, analysts need to be enabled to focus on parts of the event sequences that are relevant for their investigations. For this we enable users to create selections of interest.

6.1 Context

The context view (Figure 4D) enables users to save selected events of interest into a new context by assigning a name to them. The creation of a new context results in a new attribute separating the selected events from the non-selected. This attribute is added to the data and can be used for further analysis and drill down, enabling analysts to tag the data with more domain-specific information throughout exploration. To stay aware of the impact of a particular selection, the status bar is used to display the number of events and sequences that are currently selected in the active context.

Similar to Cappers et al. [9] contexts are saved in a tree structure where the hierarchy shows the ordering in which the contexts are created. Context c is a child of parent context d if and only if c was created when the analyst was exploring d. Contexts are used to focus on smaller subsets of the data. Right clicking a context a while exploring b results in the selection of all events that a and b have in common.

6.2 Attributes

To enable the inspection of multivariate data in event selections of interest, an attribute view (Figure 4C) is introduced showing an overview of event attributes using scented widgets [45]. The histogram bins are interactive and can be used to select and deselect events with specific attribute values within the current context. Scented widgets for sequence attributes are introduced in a second tab. Selections can be enforced within specific value ranges of a widget by adjusting its scented span slider. For categorical attributes an exclamation mark is shown in front if the number of values is too large to visualize. To inspect selected values that are not visualized, histogram bins can be sorted by frequency, rarity, or whether they occur in the current selection. Since the number of attributes is typically larger than the number of widgets that fit on screen, we enable users to filter attributes by name using a textual interface.

6.3 Interaction

Event-oriented interaction is used to keep brushing and linking consistent and understandable over all the views. Users can modify selections of interest by selecting and deselecting visual elements across different views while holding the CTRL key. In case of the attribute view, blue bars are used to show the fraction of selected events in every bin. Glyphs whose event collections are partially selected are marked with a blue dashed border, solid otherwise. Double clicking a glyph in the
we used Eventpad to study their SIP traffic. In their daily routine the
whether their servers and customers properly send SIP messages con-
valid and invalid phone conversations ill-defined. Depending on the
SIP messages in the traffic can cause SIP servers to go to an invalid
server configurations or the presence of malicious users.

7 USE CASES

We demonstrate the exploration method on two real-world multivariate
event sequence data sets. We show how tight coupling between multi-
variate and sequential analysis is achieved using two use cases. In the
first use case we start with the analysis of known sequential patterns in
order to find anomalies and patterns in the multivariate data. In the
second use case set we start with the analysis of multivariate data in
order to discover sequential patterns of interest in the data set.

7.1 VoIP traffic

The proposed exploration method was designed in collaboration with a
Dutch telecom company specialized in the provision of communication
services over Internet using Voice over IP (VoIP).

7.1.1 Problem statement

For the establishment of a VoIP conversation handshaking signals such as
invite (start call), acknowledge (accept call), cancel (interrupt call),
and bye (end call) are transferred using a protocol called SIP [37].
Besides the type of signaling, these messages have additional informa-
tion, such as status codes, source and destination phone numbers, (geo)
domain information, user-agent etc. A conversation is uniquely defined
by a CALL-ID. The presence of illegal SIP sequences and/or invalid
SIP messages in the traffic can cause SIP servers to go to an invalid
state where conversations are no longer properly billed or secured, or
could even lead to the disruption of the server [16].

A common attack model for hackers to abuse this state is to make
money using Toll fraud [1]. In this model, hackers steal user credentials
to hijack a company’s VoIP phone, make many (long) phone calls to
premium numbers they own in order to receive thousands of euros for
the dialed numbers at the expense of the company. The detection of
these Advanced Persistent Threats (APTs) [39] in general is difficult
since APT and “normal” traffic look very similar.

The flexibility of the SIP protocol makes the distinction between
valid and invalid phone conversations ill-defined. Depending on the
vulnerabilities in new VoIP software updates, these definitions might
even change over time. The main goal of the exploration is to find out
whether their servers and customers properly send SIP messages con-
form the RFC standard [38]. Gathering insight in unexpected signaling
can help analysts to understand whether they were caused due to bad
server configurations or the presence of malicious users.

7.1.2 Exploration

Together with four analysts we organized an interactive session where
we used Eventpad to study their SIP traffic. In their daily routine the
analysts use applications such as VoIPMonitor [40] and the protocol-
analyzer Wireshark [10] to gain better insight in their phone traffic.

They often use search tools such as grep and Elasticsearch in their
investigations to find explanations for errors in their server logs. We
initially analyzed 800,000 SIP messages consisting of approximately
181,000 conversations and 60 attributes. The traffic was obtained by
recording 20 minutes of SIP signaling from one of the data centers with
a load of approximately 3000 concurrent calls per second.

We started exploration with a black listing approach where analysts
created rules to search for known undesired SIP conversations. For this
they created a rule where glyphs whose event’s status code represent
SIP client or server failure are replaced with an orange “!” glyph. Blue “!!”
glyphs are introduced for error codes that were sent from their
own servers. The rule overview showed that only 2% of the events
contained internal errors (Figure 8a). They investigated this by sorting
the sequences alphabetically and creating three rules to visually distinguish between INVITE, ACK, and BYE messages. The
rule overview showed that only 35% of the data was covered by the
new rules (Figure 8a). Inspecting the sip.Method widget showed that
almost 60% of their traffic consisted of other SIP traffic involving
Option messages to ping server information and REGISTER messages.
In addition, they noticed a small percentage of MESSAGE events that
are supposed to be deprecated in their platform because of known
vulnerabilities [16].

To study the variety in the traffic, analysts decided to cluster the
sequences and sort them by frequency. They were shocked to see that
only 20% traffic was captured in the top 10 most frequent patterns
(Figure 9B) as this indicates high variability and many deviations from
expected standard behavior. Next, analysts filtered out incomplete
conversations by searching for sequences starting with an invite request
using the search interface. In addition, they decided to focus on their
own traffic by excluding traffic from third party VoIP providers. This
resulted in a new context and attribute called “Internal traffic”.

After selecting the frequent patterns and aligning them using MSA,
analysts saw that, despite the variety, overlap between sequences was
high (Figure 4B). Analysts now noticed the presence of a proxy server
in the middle of phone conversations (Figure 4B: two INV and two
CANCEL messages nested). This made them realize that some phone
calls were migrated to other data centers for load balancing. In cases
where this proxy was not present, erroneous messages were generated
twice in one sequence (highlighted in Figure 4B). In this sequence INV
and ACK are not nested. Analysts selected the aligned “!!” events in the
alignment view and inspected their multivariate data using a tabular
view. Inspecting the sip.From header of the events revealed that most
erroneous messages had an anonymous source phone number and an
invalid domain (Figure 4C).

Based on previous observations, we organized a second session
where we extended the analysis over a larger period in time. We ex-
cluded ping traffic, incomplete conversations due to fragmentation,
and phone calls that were established outside their platform. In this
session we incorporated two hours of traffic by simultaneously recording
traffic from two data centers. Since Wireshark does not support any
filtering mechanism at sequential level, we use the Eventpad engine for
preprocessing the data set only considering conversations:

• that start with an INVITE message,
• where an invite should eventually be followed by a BYE or
CANCEL, and
• only contains messages whose From.host and To.host are inside
the company’s domain.

Fig. 8. a) Application of INVITE (blue), ACK (bordeaux), and error
messages (orange/blue). b) Messages in red represent external traffic.

Fig. 7. Effect of alignment to event sequences: a) No alignment. b) MSA
layout with gap cost = 1 c) MSA layout with gap cost = 2 d) Effect of sorting
on different part of the alignment.
what is actually happening in our platform.” Additional features such as integration with Wireshark and shortcut functionality to instantly remove selected patterns of interest was requested to speedup their analysis process.

After the sessions, one of the analysts said “For us, the system is a business intelligence tool that can really help us in understanding whether urgent patient treatments share particular sequential patterns. We start exploration by first creating a rule where all urgent events happen before or after certain treatments in order to succeed (Figure 9C). Some phone conversations however required over 40 attempts (Figure 9D). Although the start time and duration of the phone call was identified by their triple ip.src, ip.dst, and Call-Id. The application of these filter rules resulted in the reduction of 40,000,000 events and approximately 4,000,000 conversations to the analysis of 1,300,000 events and approximately 80,000 conversations respectively.

After applying the rules, analysts created a new alignment of the most frequent patterns to see that in this selection the variety in the traffic was significantly reduced (Figure 9A). The sequential occurrence of INVITE messages in the Dutch traffic showed the presence of a bad proxy configuration where the target computer and proxy were the same (Figure 9A, *).

Partitioning the traffic by geoip.src showed that these bad proxies were located in Dutch traffic only (Figure 10). Furthermore, analysts noticed that most international phone calls to the Netherlands failed at their first connection attempt. Since it is possible for phone conversation to have multiple connection attempts, analysts decided to extract these patterns by constructing a rule as specified in Figure 9B. Bad proxy settings were ignored using shortest match and by enforcing that invites are not inside the attempts. After extracting the attempts and sorting them alphabetically, analysts noticed that most conversations in their network required at most two connection attempts in order to succeed (Figure 9C). Some phone conversations however required over 40 attempts (Figure 9D). Although the start time and duration of the conversation did not show anything suspicious, inspection of the event attributes shows the presence of OPTIONS messages inside a regular phone call. Although such a sequence is valid with respect to the RFC, in practice this is highly uncommon. After selecting all conversations with OPTIONS messages and inspecting the sip.From attribute showed that all conversations originated from the same client (Figure 9E).

After the sessions, one of the analysts said “For us, the system is a business intelligence tool that can really help us in understanding what is actually happening in our platform.” Additional features such as integration with Wireshark and shortcut functionality to instantly remove selected patterns of interest was requested to speedup their analysis process.

7.2 Hospital records

To illustrate the effectiveness of the method in other domains, we also analyzed a real-world hospital data set provided by the BPIC11 contest [43] consisting of approximately 1000 sequences, 134,000 events, and approximately 130 attributes. Apart from anonymization, the hospital log stores for every patient of a Gynaecology department general workflows as which group performed the activity, the age of the patient, the activity’s level of emergency etc. The hospital log contains patient treatments where urgent activities are performed. In this use case we want to know when the hospital decides to make certain activities urgent. We try to find an explanation for these activities by testing whether urgent patient treatments share particular sequential patterns.

We extract the radiotherapy events from the event log using the search
Fig. 11. A) Investigation of anomalous alignments using selections and attribute inspection. B) Rewrite rules to study workflow patterns in the Radiotherapy department: 1. Group successive consultancy (blue) events in one glyph 2. Filter by radiotherapy (yellow) 3. Disable radiotherapy encoding. C) MSA results with gap cost 2 after incrementally adding rules to the data.

interface and store results in a new selection “radio”. We investigate the different activities using the event:name attribute widget. The number of different activities in the department is too large to visualize individually, but we can see that the most frequent activities can be grouped in four categories: consultancy (e.g., primary, secondary, and consultancy by phone), teletherapy (external radiation treatment), brachytherapy (internal radiation treatment), and payment administration. We define these categories by defining four rules where we search for events with keywords “consult”, “teletherapy”, “brachytherapy”, and “rate” in their activity name respectively. Since consultancy may require multiple sessions in a row that does not add value to the investigation, we define an additional rule where subsequent consultancy events are represented by a single blue glyph. Figure 11B shows the events of interest after applying the rules. Figure 11C shows the result of applying MSA to the glyph sequences before and after defining every rule one by one.

Applying MSA with gap cost of 2 shows that urgent radiotherapy treatments in general first start with consultancy (blue), basic treatment (gray), teletherapy (green) and brachytherapy (purple) sessions (Figure 12, black box). Inspection of these events shows that they analyze trombocytes and leukocytes in the patient’s blood to study the effect of the radiation. In non-urgent cases we discovered that this type of blood research is only performed during annual consultancies. This shows that the hospital assigns higher priority to blood results of patients during radiation treatment. Patients who still had urgent activities after brachytherapy were all diagnosed with either gynecological tumors or cervix uteri cancer (both highly uncommon in the data set).

Besides the general workflow, we discovered some anomalies that were unexpected:

- Some treatments involving brachytherapy did not receive consultancy in the Radiotherapy department (Figure 11A-3). Inspecting the sequences of interest outside Radiotherapy reveals that consultancy happened in a different department (Figure 11B).
- Some treatments show an increased number of undefined and teletherapy sessions after each other (Figure 11A-2). Closer inspection of the sequences in a tabular view reveals that treatments involve a rare activity named “simulator” (Figure 11A-1).
- In most cases brachytherapy is only performed after a teletherapy session (Figure 11A-3). However in 3% percent of the sequences
Although it is possible for analysts to simplify sequences using rules (underfitting) whereas creating rules for all possible \(\text{combinations} \) of the rules. In case of the hospital data we saw for instance that naively applying MSA without any proper rules resulted in no insights of interest based on their sequential attributes, event patterns, and multivariate data associated with these events.

The definition of an anomalous sequence in general is ill-defined and requires domain knowledge and multiple iterations to define properly. The ability to visually encode parts of the data based on rules enables analysts to incrementally label their data and define their notion of what a good or bad sequence should look like. By sorting and clustering events based on the specified visual encodings analysts are able to study the coverage of their rules and discover new patterns of interest. Furthermore, the ability to evaluate rules in an offline setting also makes the tool suitable for data cleansing applications \([29]\), where analysts can use the rules to only obtain the parts of the data \(\text{sequences} \) that are relevant for their investigation.

As with every technique, there are limitations. Although the application and construction of a rule in general is easy and intuitive to understand, the resulting rewriting can become complex when evaluating a large number of rules. During the interactive sessions with analysts we noticed that they needed around 10 active rules in order to answer their questions. The application of too many rules in parallel however can clutter the sequence and alignment view. Analysts can replace multiple rules by a new one by combining constraints over multiple attributes in one rule, but this only solves the problem partly. Although regular expressions in general are powerful to specify patterns, they are limited to the number of visible scented widgets. Although sorting, filtering, and scrolling helps at finding attributes of interest, specifying queries involving many attributes becomes time-consuming.

The performance of progressive MSA and single linkage hierarchical clustering in general are \(\mathcal{O}(n^2 m^2) \) and \(\mathcal{O}(n m^2) \) respectively, where \(n \) represents the number of sequences and \(m \) the length of the sequences of interest. In practice we noticed that the application of the techniques to only unique patterns in the data set and selections of interest makes the analysis interactive for hundreds of sequences. However interactivity can be affected when naively applying these techniques over larger collections of long and unique sequences.

With respect to the visualization, the presented exploration approach focuses on the sequential occurrence of events rather than the time between them. In our problem statement absolute time does not play a major role. For applications where time between events is relevant for the analysis, the interface has to be adapted. Finally, if the number of attributes in events and sequences is large, interaction with attributes is limited to the number of visible scented widgets. Although sorting, filtering, and scrolling helps at finding attributes of interest, specifying queries involving many attributes becomes time-consuming.

9 Conclusion and Future Work

We presented a novel approach for analysts to explore multivariate event sequence data by combining attribute and sequential analysis into one unified system. The ability to interactively encode event logs by coalescing event sequences according to rules enables analysts to incorporate their knowledge to the data and test whether this matches their expectations. The combination of attribute-based scented widgets and pattern aggregations enables analysts to discover new attributes of interest and refine rules based on their new findings while staying aware of high-level patterns across different levels of abstractions. We have shown the effectiveness of the approach on real-world data sets through interactive sessions with external companies and elaborate examples.

Since the methodology makes no underlying assumptions on sequential data, it is general and flexible enough to be used in other domains.

For future work it is interesting to see how we can extend the visualization paradigm to support more complex regex operators such as capture groups and back referencing \([15]\). Also, an extension of the glyph design interface to enable further parametrization of glyphs can help to study correlations between two or more attributes.

The system currently focuses on defining new attributes of interest at the level of an event. Applications where multivariate data is difficult to obtain \(\text{e.g.}, \) flow-based network traffic analysis \([27]\) however often focus on sequential properties in their analysis. Defining proper interaction schemes to support the creation of attributes at sequential level however is nontrivial, since they apply to a different level of abstraction.

Acknowledgments

This work is funded by SpySpot, a project in the Cyber Security program of Netherlands Organisation for Scientific Research \(\text{NWO} \). The authors would like to thank Kay Reijnen and Jeroen Tieuwen et al. from Motto Communications, and in particular SpySpot members Sandro Etalle, Ömer Yüksel, Davide Fauri, and Jerry den Hartog for their valuable comments throughout this work.
REFERENCES

