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1.1. Motivation

A nuclear facility disabled in Iran [193]; 6,5 million user credentials stolen from LinkedIn
[332]; network environments inٽltrated via vulnerable Cisco routers [302]. These are just a
few examples of headlines that occur almost daily on international television and newspa-
pers. Cyber-attacks have grown in number and sophistication making cybercrime currently
the number one threat in our ICT society [75, 102, 151, 321, 350].

Cybercrime has changed dramatically in the last decade [206, 233]. Computer viruses are no
longer designed to target everybody whenever possible, but are often tailor-made to strike
once and cause severe damage. Especially for critical infrastructures (such as power plants),
hackers nowadays are willing to design complex attacks to maximize the damage in such
facilities. These targeted attacks (e.g., Advanced Persistent Threats - APTs [280]) use back-
ground knowledge to hide their communication inside a computer network, which makes
the discovery of such attacks using high-level traٹc statistics diٹcult. Inspection of low-
level communication content enables us to detect APTs [160] in deeper layers of the network,
but the heterogeneity and volume of the communication makes the discovery of attacks in
this data a challenge.

Besides security, the analysis of network communication also plays an important role in
system analysis [54]. Software and machines nowadays are composed of hundreds of sub-
systems interacting with each other to perform complex tasks, such as making computer
chips or providing worldwide telecommunication services. The discovery of for instance
suboptimal resource usage or bottlenecks can help companies to simplify and improve sys-
tems in the future. We believe that the protection and analysis of complex systems starts
with understanding the underlying network [92], but challenges remain:

• How can we detect these viruses if we do not know what we are looking for? and

• How can we explain what is happening in our increasingly complex systems?

In this dissertationwe studyhowwe can increase the understanding of networks by obtaining
insights from visual exploration of the network communication. In particular, we explore
how we can use visualization techniques and domain knowledge to assist machine learning
in the detection of targeted attacks and improve exploration through user interaction.

1.2. Computer Networks

Networks play a central role in managing complexity. Software systems for example are de-
composed into smaller components to make them better understandable, hospitals are di-
vided into diٶerent departments to deal with diseases in speciٽc body parts, and companies
divide their work over multiple divisions to make fast delivery of services feasible. The result
is a network where lots of information is exchanged between diٶerent components. Al-
though decentralization reduces the complexity of systems, understanding the overall con-
trol owپ between these components becomes more diٹcult. In Chapter 5, we show for

3



1

4 1.3. Multivariate Event Data

instance how hackers can manipulate communication between hardware components to hi-
jack networks for their own greater good.

In practice, companies and engineers want to gain insight in the behavior of their networks
for three purposes:

• System optimization: The behavior of complex systems in general is hard to compre-
hend. The identiٽcation of unexpected patterns or suboptimal resource usage can
help companies to understand what is happening in their environments and provide
improvements where necessary.

• System debugging: The integration of diٶerent systems is often a source of errors or
undeٽned behavior. Analysis of system communication enable analysts to discover
potential bottlenecks or redundant behavior.

• System monitoring: Complex systems often use valuable resources such as sensitive
data or expensive hardware to provide services to their target customers. Illegitimate
usage of these resources can seriously (physically) damage these assets [60]. Compa-
nies therefore want to continuously check whether particular behavior such as con-
ictsپ of interest [49], user impersonation [128], communication hijacking [158] etc.
is not present in the system.

In order to achieve these goals, we need to understand what data is being transferred and
what type of data should be allowed and disallowed. In case of system optimization we often
do not know what we are looking for, whereas for the protection of systems obtaining an
overview of all desired and undesired behavior is diٹcult. For both purposes, insights can
be gained from visual exploration of the system’s network traٹc.

1.3. Multivariate Event Data

Many domains try to gain insight in their networks by logging events. Hospitals for instance
store health records to analyze bottlenecks in patient treatments, credit card companies store
nancialٽ transactions to discover fraud, and supermarkets log purchasing histories of cus-
tomers to optimize their shop interior (Figure 1.1). What all these domains have in common
is that they are interested in the discovery and understanding of patterns and outliers (also
referred to as anomalies).

Besides the time of occurrence and type of event, in practice additional properties (also re-
ferred to asmetadata or attributes) are stored describing how and under what circumstances
the event was generated. Health records for instance can store information about the treat-
ment of a patient, the name of the doctor, the department, how long the treatment took etc.
We call events with metadatamultivariate events.

The exploration of multivariate event logs is still a challenge due to their size and variety.
Even for computer networks consisting of a few nodes, the amount of communication can
be in the order of hundreds of thousands of events per second. In addition, the heterogeneity
in system events can easily require the analysis of hundreds of attributes andmore. This high-
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a) b)

c) d)

Figure 1.1: Examples ofmultivariate networks and their communication: a) items bought in a supermarket; b)
user click behavior on websites; c) packets sent between computers; d) patient treatments in a hospital are all
examples of data that is being stored for the analysis and understanding of networks.

dimensional space makes exploration using just machine learning techniques diٹcult [114]
as domain knowledge is required to focus on relevant aspects.

To cope with large volumes of data, current event analysis tools often work with aggregated
data (also known as owپ data [59]) to analyze high-level network properties, such as the
number of events transferred per second and the size of the transferred data. However, for
the detection of domain-speciٽc virus attacks this level of abstraction may not give suٹ-
cient information (Section 2.6). Furthermore, the analysis of sequential patterns in event
logs is typically limited to a single attribute at a time, thereby ignoring potential correlations
that can exist between attributes. For root-cause analysis of malicious events both sequential
properties and multivariate data should be explored simultaneously, since values in multi-
variate data are often crucial to understand patterns in sequences and vice versa.

1.4. The role of Visual Analytics

The analysis of system events plays an important role in the protection of cyberphysical
systems. The sudden reboot or shutdown of a computer for instance can be an indica-
tor that something is wrong in the network, but why do we need visualization if we have
machine learning and artiٽcial intelligence to detect intrusions automatically? Automatic
methods have shown to be beneٽcial for the detection of both stealthy and brute-force at-
tacks [114, 325]. However, to ensure that no attacks are missed, fully automated methods
often tend to misclassify normal events as malicious. These are also referred to as false posi-
tives or false alerts.

Even when fully automated techniques claim to have false positive rates of less than 1%, in
environments where thousands of events per second are generated, this can lead to tens of
alerts per second. In modern System Information and Event Management (SIEM) frame-
works such as AlienVault [7], system analysts have to deal with thousands of alerts per week
and more (Figure 1.2). To remedy this, visualization could be an eٶective mean for the fol-
lowing reasons:
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Figure 1.2: Fully automatic anomaly detection systems such as a) HP Arcsight [144], b) IBM QRadar [149], and
c) AlienVault [7] still produce large amounts of false positives. How can we find the alerts that are relevant for
the protection of our systems?

Exploit human cognition: The human brain excels in the discovery of pat-
terns, outliers and distortions in visual input. The high-end feature extrac-

tion (e.g., positioning, orientation, color, shape) of the brain enables human to eٶort-
lessly detect and recognize objects in their environment. By presenting our data in a
visual way we can exploit this processing power to obtain new insights from the data
that might have gone unrecognized when solely relying on data-mining techniques or
statistical methods.

Explain alerts: Events can only tell you what has happened in the environ-
ment, but not why they have happened. Human domain knowledge and
other data sources can assist in assessing the severity of an alert by providing

context. Knowing for instance that a machine was turned oٶ for maintenance can
trigger human cognition to relate the presence of alerts to these events.

Adjusting automated techniques: Concluding an alert to be false does not pre-
vent it from happening again in the future. By incorporating a human in the
decision-making process, we can let the user improve classiٽcation results by

incrementally tweaking parameters of the algorithm or by applying the techniques on
diٶerent parts of the data.

Even for networks consisting of a few nodes, the amounts of communication can be tremen-
dous. A pure visualization approach is therefore often impractical. However, pure auto-
mated techniques often lack context and fall short as a result of large amounts of false alerts.
Where automated techniques are fast in analyzing data but can be error-prone, humans are
slow but more accurate. In this dissertation we therefore aim for a visual-analytics approach
[166] where we combine algorithmic support, visualization, and human interaction to get
the best of both worlds.
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1.5. Objective

The goal of this dissertation is to combine anomaly detection [51], Deep Packet Inspection
[253], and data visualization [48] to enable the detection of targeted attacks. As long as ar-
tiٽcial intelligence cannot outperform human domain knowledge and cognition, we believe
that humans play a vital role in the discovery and assessment of anomalies. In order to cope
with the large data volumes, however, the use of automated techniques is unavoidable. To
this end, the main question addressed in this dissertation is:

How can we use interactive visualization techniques and automated methods to discover
relevant patterns and anomalies in large event collections?

The word relevant in the research question refers to the challenge of assessing the severity of
an anomaly. Especially when dealing with automatically generated alert collections, distin-
guishing false positives from true alerts is a nontrivial task.

In order to answer this question, we aim for a hands-on experimental approach where we
design end-solutions based on hypotheses and observations we made from both the data
and the problem domain. Pretorius et al. [256] already showed that these domains may not
necessarily coincide. Although the main application area of the dissertation is focused on
network traٹc analysis for cybersecurity, the developed techniques are not limited to this
domain. For instance, in Chapters 5 and 6 we demonstrate how to use the techniques to
enable the analysis of patient health records and vehicle travel patterns.

1.6. Outline & Contributions

In this dissertation we look at the research question from two diٶerent perspectives, namely:

• the types of data sources that are involved in the discovery of patterns and anomalies,
and

• the types of patterns and anomalies that can be discovered.

From a data-perspective we can identify three sources of information, namely:

• multivariate event data describing what happened in the system,

• alert data indicating the severity of (collections of) events, and

• domain knowledge to assess the relevance of a particular observation.

We could consider alert data as an additional attribute in the multivariate event data. How-
ever, alert data can be deٽned at higher levels of abstraction beyond the scope of an event
(e.g., at the level of a source, sequence, or a collection of events) that we can exploit using
visualization.

In Chapter 2 we show that with respect to the detection of patterns and anomalies, we can
identify three diٶerent classes, namely point, contextual, and collective anomalies. Figure 1.3
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Figure 1.3: Overview of the chapters in this dissertation with respect to the research question. Every chapter
addresses a different class of anomalies along with two or more data sources. Chapters 6 and 7 present case
studies of the developed techniques on real-world data.

shows how each chapter contributes to the study of patterns and anomalies with respect to
the diٶerent data sources and classes of anomalies. The proposed systems were designed to
discover and analyze anomalies in event logs in diٶerent ways. The novelty of the proposed
techniques therefore do not limit themselves to the cybersecurity domain. Although the
use cases of the prototypes are mainly focused towards security problems, the systems are
designed to work with any tabular data in general. This is also illustrated in Chapters 5 and
6. The dissertation is structured as follows.

Chapter 2 provides a background overview of interactive visualization techniques for event
visualization and network traٹc analysis. This chapter also presents an overview of diٶer-
ent classes of patterns and anomalies along with a review of existing visualization tools for
cybersecurity.

Chapters 3 to 5 present newly developed visual analytics systems for the discovery of diٶerent
types of patterns and anomalies in multivariate event logs. In Chapter 6 and 7 we present
diٶerent data explorations, where we use our techniques to discover illegal traٹc activity in
a wildlife preserve and analyze ransomware activity [219].

Finally, Chapter 8 concludes the dissertation by providing an overview of the results and
techniques. In addition, we reپect on the results and provide guidelines on how to approach
targeted attack analysis in network environments using visualization.

The key contributions of this dissertation are:

!

In Chapter 3 we present a novel exploration method to dis-
cover anomalous events by converting the event metadata to a
pixel visualization. Combined with an online classiٽer, parts

of the metadata are lit up when events contain values that are classiٽed as malicious.
Through interaction, users are enabled to explore the validity of themetadata attribute
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space and reٽne classiٽcation results where necessary.
! When trying to assess the relevance of an anomaly, context

plays an important role. For instance, although the access of a
leٽ X does not have to bemalicious in general, it can be consid-

ered dangerous when performed by a certain user. The way we split our data therefore
determines the type of anomalies that stand out. In Chapter 4 we present a system to
inspect alert data from diٶerent perspectives. We show how visualization and inter-
action can be used to enable analysts to discover high-level threats in a collection of
low-level alert collections.

!
Chapter 5 focuses on the analysis of anomalies in event se-
quences. In this chapter we present a system called Eventpad
that enables rapid and cost-eٶective discovery of patterns in

event collections by visualizing them as blocks on a screen. Rules enable users to high-
light and visual encode event properties that are of interest. Automated techniques
such as clustering and alignment in turn can use this labeling to discover patterns be-
tween event sequences. Similar to a notepad editor, ndٽ & replace functionality and
conditional formatting can be used to quickly search and highlight outliers in the data.

!
In Chapter 6 we present a case-study of Eventpad on the VAST
Challenge 2017 Mini Challenge, where we apply anomaly de-
tection on vehicle travel patterns in a Wildlife preserve. We

show how we can combine contextual analysis and hypothesis testing with user in-
teraction to enable rapid discovery of patterns without having the notion of an alert.
This enables analysts to proactively search for anomalies according to their expectancy
model, rather than trying to ndٽ an explanation of automatically discovered anoma-
lies afterwards.

In Chapter 7 we extend the Eventpad system with temporal
views to quickly study leٽ access patterns in malware traٹc.
In particular, we look at the behavior of ransomware viruses

that aim to deliberately block access to lesٽ on a user computer in exchange for
money. Based on the discovered patterns we test if the malware samples are present
in recorded samples of the university’s oٹce network.

Finally, Chapter 8 concludes the dissertation by providing an overview of the research re-
sults and reپecting on the lessons learned. We provide general guidelines towards the usage
of automated techniques and visualization for the detection of targeted attacks in network
environments along with directions for future work.
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The research question of this dissertation is multi-disciplinary, covering diٶerent topics in
the area of data visualization, security, anomaly detection, and data science in general. In
order to give our work context, we provide an overview of the current techniques and re-
maining challenges in each eldٽ with respect to the detection of anomalies for cybersecurity.

2.1. Data science

Data are very rich. Data can tell you what has happened, how systems and phenomena work,
where they can be improved or enable users to make predictions about future phenomena.
However, it is diٹcult in general to get clear takeaways by solely looking at the raw data.
Data processing, classiٽcation, and linking betweenmultiple sources are often required turn
data into information.

The goal of data science [77] is to extract knowledge or insights from data to understand and
analyze actual phenomena. This includes the processes [53] of

• data extraction: obtaining the desired data to enable analysis;

• data transformation: preparing the data to enable the use of analysis techniques (e.g.,
machine learning, process mining, statistics);

• data analysis: application of statistical methods, automated techniques, and visual in-
spection to discover new ndingsٽ in the data;

• data presentation: (visually) communicating results to target domains to enable decision-
making; and

• data monitoring: testing the performance and validity of applied extraction, transfor-
mation, and analysis techniques.

Data analysis techniques are often combined as they all have pros and cons. Machine learn-
ing approaches, such as classiٽers, can handle large amounts of data, but can be error-prone
without proper tuning of parameters. Statisticalmethods canmeasure and compare complex
data phenomena using metrics, but can provide a skewed [145] or incomplete [132] view of
the system due to the lack of overview. Data visualization enables users to gain quick in-
sights in the data, but becomes challenging when analyzing large amounts of data in short
periods in time. In Section 2.7 we discuss the possibilities and challenges with respect to the
extraction of network events. Techniques for transforming, analyzing, and presenting data
are presented in Chapters 3 through 5.

2.2. Data visualization

Card et al. [48] deٽne visualization as the use of computer-supported, interactive, visual
representations of data to amplify cognition. The aim of data visualization is to identify
trends, patterns, and contexts that would otherwise go unrecognized in unstructured (e.g.,
text) or structured (e.g., tabular data) data.
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Figure 2.1: Ancombe’s Quartet [132] Even when data sets share the same statistical properties, nontrivial dis-
tinctive patterns can be observed visually.

The human brain can recognize objects in just a fewmilliseconds by rapidly analyzing visual
features such as color, orientation and positioning in parallel. In addition, the brain can also
associate this visual inputwith ideas, hypotheses, and other sources of information to acquire
new knowledge and in-depth insights. Data visualization tries to exploit these innate human
capabilities by enabling the user to visually interact with the data.

Data visualization can be useful for data exploration as well as explanation. Steel et al. [150]
refer to data exploration as trying to ndܦ the story that is behind the data, whereas data ex-
planation aims towards trying to tell that story to somebody else. Data exploration is useful
when dealing with lots of data without actually knowing what is in there. For such situations,
visualization can assist users in discovering nontrivial insights [165]. In data explanation,
visualization can help people to communicate and discuss results by deciding what and how
to show the information to convey the desired message. This is also referred to as data sto-
rytelling [177].

If we know exactly what we are looking for and we know how to ndٽ our phenomena of
interest, we would not need visualization. In this case, we can come up with an automatic
method to solve our problem. However, if we don’t know what we are looking for, visual-
ization can give us valuable insights. Ancombe’s quartet [132] for instance is an example
where clear distinctions between data sets can be observed even though they are statistically
identical (Figure 2.1).

In data exploration a question typically does not stand on its own. Once observations are
made that deviate from our expectation, new subquestions emerge such as “why am I ob-
serving this?” and “could this be related to...?”. In order to enable this continuous reasoning
and amplify cognition, interaction is key [48]. Yi et al. [347] identiٽed diٶerent types of
operations that can be used to interact with data in general:

• Select: mark something as interesting;
• Explore: show me something else;
• Reconܦgure: show me a diٶerent arrangement;
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• Encode: show me a diٶerent representation;
• Abstract/Elaborate: show me more or less detail;
• Filter: show me something conditionally; and
• Connect: show me related items.

This is typically achievedwith interaction techniques such as dynamic querying [276], linking
[39], brushing [166], and semantic zooming [247].

Data visualization can be subdivided into three communities [138], namely scientiٽc visu-
alization [235], information visualization [284], and visual analytics [166]. Scientiܦc visual-
ization focuses on visualization techniques for data representing physical phenomena (e.g.,
blood vessels [163], 3D molecules [243], volume rendering [86]), whereas the eldٽ of infor-
mation visualization specializes in the design of interactive techniques to analyze abstract
data for which no physical representation is given. Examples are for instance tabular, hier-
archical, and time-series data.

Model building Model Visualization

User interaction

Parameter reönement

Transformation

Data mining

Feedback loop

Mapping

Visual Data Exploration

Automated Data Analysis

Figure 2.2: Themodel of Keim et al. [166] shows how visualization andmodels can be used to gain insights.

Theٽeld of visual analytics extends data visualization by combining analysis techniques with
interactive visualizations for eٶective understanding of, reasoning about, and decision mak-
ing on complex data sets [166]. This is illustrated in the model by Keim et al. in Figure 2.2.
The introduction of algorithmic support in visual analytics is two-way. On one hand, the
user is enabled to learn from the results that can be derived from the model. This can for
instance lead to new questions or diٶerent perspectives on the data. On the other hand, the
model can “learn” from the users by enabling them to adjust parameter settings or labeling
the data with additional information. The latter is for instance popular in semi-supervised
learning techniques [52, 360].
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2.3. Users, Tasks, and Problems

The analysis of event collections enables users to investigate historic system events, to mon-
itor system conditions, and to make predictions about future phenomena (e.g., a system
breakdown) [84, 222]. Here are some examples of user categories that can beneٽt from in-
teractive visualization of event collections.

Security Operations Center analysts
A Security Operations Center (SOC) is a facility where information systems such as data
centers, servers, networks, desktops, and other endpoints are monitored, assessed, and de-
fended. Themain task of network engineers and security analysts in a SOC is to detect signs
of possible cyber-attacks or network intrusions by monitoring these systems actively. A big
challenge in these centers is to achieve overview and in-depth real-time inspection of the
environment when dealing with tremendous volumes of streaming data.

Emergency Response Teams
Computer EmergencyResponseTeams (CERTs) [110] (also referred to asComputer Security
Incident Response Teams) are groups of network and security experts that handle computer
security incidents. Tasks of CERTs vary from ranking and escalating tasks and alerts [133] to
coordinating and executing response strategies for the containment and remediation of IT
threats. CERTs typically combine results of multiple network intrusion detectors and SIEMs
to determine the severity of a threat. Big challenges here are how to deal with large false
positive rates and how to combine information sources.

Digital forensics experts
Digital forensics [50] focuses on the investigation of cyber incidents after the attack has hap-
pened. The goal of digital forensics is to collect evidence in large recordings of network traf-
,cٽ malware samples, hard disk drives etc. to identify people that are responsible for the
attack and to develop countermeasures accordingly. Digital forensics can require months of
analysis [159]. The challenge here is to enable eٹcient in-depth analysis of these large oٺine
data collections [115].

Maintenance engineers
Themaintenance of a critical infrastructure is a diٹcult task. The nancialٽ damage as a result
of a system breakdown can be in the order of millions of euros per day, whereas preventive
teardown of normal functioning machines increases the risk of material fatigue. The inspec-
tion of trends and anomalies in sensor data enable maintenance engineers to predict when
machine parts need to be replaced. A big challenge here is how to relate low-level sensor
events to the breakdown of speciٽc machine components [222].

Network engineers
Network engineers are responsible for the deployment andmanagement of the IT infrastruc-
ture inside companies. Their daily job consists of multiple tasks including the reception and
processing of security tickets about odd network behavior [155]. Based on the intelligence
that is obtained by CERT and SOC members they deploy updates in the network to solve
vulnerabilities. This can vary from deٽning new rewallٽ rules in the routers to re-installing
or patching machines in the network. A big challenge for network engineers is how to com-
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municate observations and tasks between diٶerent groups to implement security solutions
as fast as possible.

2.4. Anomaly detection

Chandola et al. [51] deٽne the eldٽ of anomaly detection (also known as outlier detection)
as the identiٽcation of items, events or observations that do not conform to an expected
pattern or other items in a dataset. Examples of anomalies are for instance data points not
following a particular distribution (e.g., extrema), the occurrence of incorrect or infrequent
values, or the repeated presence or absence of particular events. Anomalies can be deٽned
according to diٶerent metrics [242]:

Distance: the distance between data points is often used to determine
anomalies. The assumption of this model is: the greater the distance be-
tween a point and the rest of the data, the more likely it will be diٶerent

from the rest. The distance between points is deٽned by means of a distance metric,
such as Manhattan distance [27], cosine similarity [287], and Euler distance [76].

Frequency: data points can be considered anomalous if they occur too little
(or too often) in the data set with respect to others. Some examples are
the invocation of a deprecated function call, the (repeated) occurrence of

incorrect or mistyped values, or the sudden change of a constant value over time.

Density: the density model assumes that normal data points are close to-
gether and abnormalities are more isolated. This model is typically used in
clustering techniques such as DB-SCAN [91] to deal with nonlinear mani-

folds. The icon shows an example where data points can be close to each with respect
to distance, but can still be an outlier with respect to neighbor density.

Anomalies in general can be classiٽed into three categories [51]. Figure 2.3 shows examples
of each category for scatterplots and event sequences:

• Point: Point anomalies are events (or data points in general) that are anomalous with
respect to the entire data set. An event B can be considered anomalous in an event log
consisting of only A’s if we deٽne anomalies by frequency. Point anomalies are also
referred to as global anomalies, since they are unusual irrespective of the context in
which it was observed.

• Contextual: Contextual anomalies are data points that are anomalous with respect to
a certain context. Consider for instance the event sequence in Figure 2.3b. An event
sequence consisting of alternating A’s and B’s may not seem unusual, but it can be
considered strange when the data is split by an attribute of choice (e.g., split by the
user). Contextual anomalies are also referred to as local anomalies since they are only
visible with respect to a subset of the data.

• Collective: Collective anomalies are collections of data points that together are consid-
ered anomalous. For example, events such as “Close gas valve” and “Light a ”reٽ are
not unusual in a combustion engine. However, the order in which the events occur
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together can have severe consequences. Collective anomalies are related to the discov-
ery of patterns. The Oxford Dictionary deٽnes a pattern as “a regular and intelligible
form or sequence discernible in the way in which something happens or is done.”
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A B A B A B A

A
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Figure 2.3: Three classes of anomalies: a) Point anomalies (unusual with respect to the entire data set) b)
Contextual anomalies (unusual with respect to a subset), c) Collective anomalies (unusual as a group, not nec-
essarily as individuals).

The detection and classiٽcation of anomalies is a nontrivial task and is closely related to the
“Reference Class” problem [131] in statistics. Especially for contextual anomalies, the way
we split our data determines the type of anomalies that stand out. The example in Figure
2.3b already sketches the problem when dealing with only two attributes such as shape and
color. The number of possible perspectives unfortunately grows exponentially in the number
of attributes. How should an algorithm (or an analyst) know which perspective of the data
is more relevant than the other? In Chapters 3-5 we propose several techniques how we can
use interaction to investigate contexts in an exploratory fashion.

Finally, anomaly detection can be either time-aware or time-agnostic. Time-aware anomaly
detectors focus on the detection of anomalies in temporal data by taking time data into
account (e.g., time between events, time of occurrence, event ordering). Time-agnostic
anomaly detectors ignore temporal information and focus on the detection of anomalies
on individual data points (e.g., inside the multivariate data of an event) or data aggregations.

2.5. Network Intrusion Detection

Anomaly detection in cybersecurity is crucial for the detection of undeٽned or malicious
behavior. The surveys of Mitchells et al. [221] and Etalle [92] classify Intrusion Detection
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Systems (in short IDSs) into three main categories, namely knowledge-based, behavioral-
based, and speciٽcation-based intrusion detection.

Knowledge-based systems detect intrusions by searching the data for
known patterns of benign ormisbehavior. Typical examples of knowledge-
based detection techniques are for instance black-listing and white-listing
approaches [98], where users deٽne rules (e.g., signatures) specifying what

an entity or system is (or is not) allowed to do. Knowledge-based detection is highly
eٹcient to apply and easy to construct, but is unable to discover anomalies that are
beyond the scope of these rules.

Behavioral-based anomaly detection discovers intrusions by assessing the
severity of a new data point according to some baselinemodel. Behavioral-
based detectors typically require a training phase to learn how regular ac-

tivity in the system can be described.

Although behavioral-based detection has shown promising results in the literature
[344], in practice these models are diٹcult to train on environments that are already
compromised or change quickly over time [240]. As a consequence, the number of
false positives can be high.

!

Speciܦcation-based anomaly detection is a special branch of anomaly de-
tection that deٽnes legitimate behavior of a system by means of a formal
speciٽcation. Systems are considered intruded when their behavior devi-

ates from this model. Ko et al. [173] showed that speciٽcation-based anomaly detec-
tion achieves lower false positive rates compared to behavioral-based anomaly detec-
tion by specifying policies for security-critical applications. Creating a full policy of a
system in practice, however, is diٹcult and often time-consuming.

Theboundary between knowledge-based andbehavioral-based detection is not sharp. Heuris-
tic detection [227] for instance enables analysts to specify rules that are softer compared to
traditional signature-based approaches, but are often still bounded to an expectancy model
the security analyst has of the environment. To improve distinguishability, Etalle [92] pro-
poses a diٶerent categorization for these techniques based on whether they describe accept-
able or rejectable behavior. Data visualization techniques typically aim towards behavioral-
based intrusion detection because of their exploratory nature [162]. Even if we do not know
what we are looking for, the visualization of historical information can assist in the detection
of unknown attacks.

Finally, network intrusion detection can be done in an online or oܣine fashion. Online so-
lutions are typically used in network monitoring applications [87] to detect intrusions by
observing the network (near) real-time. This involves eٹciently testing incoming data for
particular signatures and measuring traٹc behavior over time. Once a potential Indica-
tor of Compromise (IOC) has been discovered, digital forensics [50] (also referred to as
post-mortem analysis) analyzes the phenomena in greater detail by reverse engineering the
behavior from recordings of large network samples.

According to intrusion detection surveys [114, 198], general-purpose state-of-the-art
behavioral-based intrusion detection systems still suٶer from large false positive rates. How-
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ever, anomaly detection techniques by Yuksel et al. [349] and Costante et al. [70] show an
impressive reduction in false positives when designing the techniques for speciٽc domains,
such as industrial control systems and database environments. In addition, bothmethodolo-
gies enable users to provide feedback on proٽles that were learned by the anomaly detection
model, illustrating the value of a human in the detection process. In the next chapters, we
continue to explore the value of human feedback by combining intrusion detection models
and user knowledge using visual analytics.

2.6. Advanced Persistent Threats

Until the early 2000s viruses were mostly designed to target large audiences, such as the con-
sumer market [206, 233]. The virus is typically spread by email or via links on websites with
one goal in mind: trying to infect as many as possible. Starting from 2005 [147] a diٶerent
class of computer viruses emerged that, in contrast to traditional viruses, were speciٽcally
designed to target a particular infrastructure.

Once inٽltrated (typically bymeans of social engineering [124]), the virus locates the system
that it wants to target and stays under the radar by hiding its traٹc in or alongside regular
activity. These viruses either try to stay hidden and leak information to the outside world or
aim to cause severe damage to the underlying infrastructure. This class of computer viruses
are referred to as Advanced Persistent Threats (in short APTs) [280].

In 2010 a famous APT attack was executed on a nuclear facility in Natanz, Iran [60]. The
Stuxnet [193] virus is held responsible for the destruction of up to 1,000 centrifuges by ma-
nipulating their rotor speed. Instead of shutting down the centrifuges (what would have re-
sulted in an alarm), the virus altered the fan speed of the centrifuges by gradually increasing
and decreasing it. This eventually resulted in a faster breakdown of the centrifuges. Other
examples of more recent attacks and attempts are:

• 2015 Carbanak APT bank robbery [272];

• 2015 Four Month lasting attack on the New York Times [95];

• 2017 Attackers deploy new ICS Attack Framework [101];

• 2018The (failed) hack attempt to a Saudi Arabian Petrochemical Plant [234]; and

• 2018 SmartInstall hack in Cisco Routers [302].

Although inٽltration of targeted attacks in general is very diٹcult to prevent, we can detect
signs of expansion and sabotage by analyzing the network traٹc that is sent inside the en-
vironment. APTs typically try to hide their activity in the application layer of the network
traٹc. Deep Packet Inspection [253] enables us to analyze application data to keep track of
undesired behavior in the network.
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2.7. Network traffic

Data extraction plays an important role in cybersecurity. The type of data source (e.g., net-
work traٹc, twitter, newspapers), the location where the data is obtained, and the level of
granularity determines the type of attacks that can be discovered. Counting events per sec-
ond is quick and easy, but limits the discovery of attacks to bursts or drops in data volumes.
Inspection of the full data enables the discovery of more complex attacks, but introduces
challenges with respect to the analysis and recording of the data. In this section we discuss
how network traٹc is structured, how it can be obtained, and what the main challenges are
with respect to the analysis of this data.

2.7.1. Non-intrusive vs. Intrusive Network Recording

a) b)

= Node

= Virtual node to collect logs

= Eavesdropping device

Figure 2.4: Different ways to extract event information from networks: a) Non-intrusive recording eavesdrops
on the edges of the network. The network is unaware of the recording and events consist of source and target
information. b) Intrusive recording requires the installation of event recording software on every node in the
network. Events obtained from intrusive recordings contain source information.

In general, network communication can be recorded in two diٶerent ways, namely non-
intrusive versus intrusive (also depicted in Figure 2.4). Non-intrusive data recording tech-
niques collect data by “eavesdropping” on the edges of the network and the network is un-
aware of this recording. This approach is typically used in Network Intrusion Detection
systems (also known as NIDSs) and traٹc analyzers such as Wireshark [63] and Bro [244].
Intrusive data recording techniques extract events from the nodes in the network. This re-
quires that nodes log all the actions they perform throughout system execution. Companies
and organizations often perform intrusive data collection to studyworkپows in systems [54].

Event data obtained from non-intrusive data recordings typically have source and destina-
tion/target information (e.g., network packets). Intrusive event data are typically limited to
source information only (e.g., system logs). Intrusion detection systems that operate on indi-
vidual hosts or devices in the network are also referred to as Host-based Intrusion Detection
Systems (HIDSs) [198, 255, 346].

Multivariate data collections can store properties for diٶerent aspects of the network, namely
for nodes, events, and sequences (Figure 2.5). Examples are:

• nodes: source IP address, device name, time since last reboot, etc.;
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Event Call-ID TimeStamp Type Status Username Device Duration

E1 0 12-06 06:00 REGISTER OK Bob Samsung 0 sec

E2 0 12-06 06:10 CALL Failed Bob Samsung 10 min

…. … … … … … … …

E6 1 13-06 08:01 CALL OK Alice Nokia 0 sec

E7 1 13-06 09:01 BYE OK Alice Nokia 1 hour

Node Properties Sequential Properties
Username = Bob
Device = Samsung

Call-ID = 0
Duration = 10 min

Call-ID = 1
Duration = 1 hour

TimeStamp = 13-06 08:01
Type = REGISTER
Status = OK

Username = Alice
Device = Nokia

Figure 2.5: Node and sequential properties such as username, device name, call-id, and call duration can be
encoded as event properties. The remaining attributes are examples of event properties.

Byte Analysis 0x49 0x50 0x54 0x43 0x50 0xFE 0x53 0x4D 0x42 0x05 0x00 0x45 0x76 0x69 0x6C 

!

Flow Analysis

Semantic Analysis

PayloadIP TCP
0xFE 0x53 0x4D 0x42 0x05 0x00 0x45 0x76 0x69 0x6C 

Header Command Filename

CreateSMB Evil.txt

#Attributes #Protocols

1 None

5-20 2 (IP/TCP)

50-200/
protocol ≥  3

Figure 2.6: Network traffic can be analyzed at different levels of abstractions: a) byte-level; b) network-level;
c) application-level.

• events: type of event (e.g., open ,leٽ close ,(leٽ option parameters (e.g., read-only set-
tings, leٽ share properties), time of occurrence, etc.; and

• sequences: the number of events per sequence, sequence duration, session_id, etc.

In practice, node and sequential properties are often added as metadata to event records for
the sake of self-containment. In case of node properties, this typically results in values that
are constant over multiple events. Figure 2.5 shows examples of node, event, and sequential
properties in Voice Over IP phone call records.

2.7.2. Deep Packet Inspection

Deep Packet Inspection (DPI) [253] is an overall term for data processing techniques that
look in detail at the content of network traٹc. Figure 2.6 shows diٶerent levels in which we
can analyze traٹc [241]:

• Byte analysis [65] analyzes network traٹc by discovering patterns in a byte represen-
tation of the traٹc. Any information related to the meaning of byte (sub)sequences is
discarded. Statistical proٽling [291] or n-gram analysis [130] can be used for instance
to detect illegal shellcode sequences [6].

• Flow analysis [226] tries to gain better insight in the traٹc by extracting values from
byte sequences according to some protocol speciٽcation (also known as dissecting or
parsing [4]). Network protocols describe how messages should be converted to byte
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sequences and vice versa. Network packets are often composed of multiple nested
protocols that each have their ownpurpose. Protocols such as IP andEthernet are used
to route packets to the desired destination, whereas protocols such as TCP [108] are
used to ensure that packets are not lost during transfer. Application speciٽc protocols
such as Samba [268] or SIP [266] can be used to enable leٽ access on network shares
or enable the transfer of audio material (e.g., Voice Over IP [28]) respectively.

In case of owپ analysis, the parsing of the network traٹc is limited to the protocols
that nearly every packet has in common, namely IP, Ethernet, and UDP [254] or TCP.
The information obtained from these protocols enables analysts to study where, when,
and how much traٹc is sent over the network. However, the content of the messages
(also referred to as payload) remains unknown.

• Semantic analysis [73] (or Deep Packet Inspection) enables the analysis of network
packet content by also parsing application speciٽc protocol data in the network traٹc.
This enables analysts not only to see how large a packet is, but also what it represents
(e.g., access to a ,leٽ initiation of a phone call).

Depending on the type of packet (that is, the protocols it uses) speciٽc attributes and
values can be present. In addition, the number of possible protocol eldsٽ and options
in application-speciٽc protocols such as Samba is in the order of hundreds and more.
This raises questions about deciding which protocol eldsٽ to analyze and how they can
contribute to the detection of complex network attacks.

DPI data is typically stored in PCAP lesٽ [296]. Figure 2.7 shows an example of a dissected
network packet representing a request to open a leٽ called srvsvc. The packet contains
data of 5 diٶerent protocols, the outer Frame layer is constructed by Wireshark. The last
layer SMB2 (Samba) stores information that is related to the leٽ operation. This is also re-
ferred to as application data or Layer 7 traٹc [34]. The Netbios layer stores the size of the
packet without network layers. This way the Samba protocol parser knows when the end of
the packet has been reached.

In practice, Deep Packet Inspection is computationally intensive and often requires expen-
sive hardware to enable real-time large-scale network monitoring [198]. Instead, current
systems typically focus on owپ analysis by recording Cisco Netپow data [59]. Burst and
drop activity in the network can be an important indicator of compromise in network activ-
ity, but may not be a suٹcient indicator for the detection of stealthy attacks at application-
level. Chapter 7 for instance shows how Ransomware malware can become hard to detect
when hiding leٽ access activity in deeper layers of the network data and spreading the attack
over a larger period in time.

Encryption

The techniques described in this dissertation with respect to the analysis of network traٹc
assume that the traٹc is unencrypted. This either implies that the observed network traٹc is
not encrypted at all or the network capture system is able to decrypt and re-encrypt the traٹc
after inspection. Although insights can also be gained by analyzing unencrypted metadata
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Figure 2.7: Example of one full network packet dissection. The network packet represents an open request to
a file srcsvc located on a network share.



2

24 2.7. Network traffic

of security protocols such as Secure Sockets Layer (SSL) [140] and Transport Layer Security
(TLS) [8, 78], Deep Packet Inspection becomes less eٶective.

Encryption of network traٹc however does not imply safety. For critical infrastructures such
as Industrial Control Systems, Fauri et al. [96] argues that encryption not only decreases data
visibility for potential attackers, but also limits security tools in the detection of intrusions.
By naively encrypting the network traٹc in environments, attackers won’t be able to read the
content of the traٹc, but also defenders won’t be able to see the attacker once he has entered
the system.

Privacy

Deep Packet Inspection in network monitoring is often questioned for privacy issues [10,
23, 112]. The Dutch telecom provider KPN [303] for instance was recently negatively in the
news for admitting the use of DPI techniques for optimization of their infrastructure.

A balanced decision has to bemade between protection by inspecting data versus preserving
privacy by hiding it [81]. On one hand, people want to be safe from attacks on nuclear
facilities and agree that network traٹc should be monitored for the greater good. At the
same time, users don’t want their own data to be monitored as there might be a risk for the
data to be misused or leaked to the outside world.

In general, systems that capture byte data fromnetwork environments are capable to perform
Deep Packet Inspection. In this dissertation we show how we can use open source software
such as WireShark [63] to gain deeper insights in recorded network samples. However, the
application of DPI in large networks in practice can be diٹcult to achieve for several reasons:

• Traܢc volume: EnablingDPI in network environments can be costly both in computa-
tion power and hardware. A single instance of a dissector such as Wireshark typically
limits the analysis to a few thousand packets per second. Brown et al. [35] show that
the capturing of raw traٹc on a single instance is limited to just a fewGigabits per sec-
ond. Enabling large-scale DPI requires a more complex architecture of dissectors and
advanced storage management to keep up with the pace of larger network streams.

• Data fragmentation: Network lesٽ and messages are typically divided into chunks to
enable transmission. In order to obtain a full insight in traٹc content, packets have
to be reassembled after which the parsing can start. Phenomena such as packet omis-
sions, reordering, and retransmissions as a result of packet loss can make the recon-
struction a tedious and nontrivial task.

• Level of abstraction: Network protocols consist of many options and technical details
that are diٹcult to grasp to the untrained user. In-depth knowledge about the Internet
Protocol Stack [257] and domain-speciٽc protocols are required to extract informa-
tion from this data.

Similar to European GDPR guidelines [30], the purpose and application of DPI should be
transparent and should be built on a certain level of trust. Extraction of the full traٹc con-
tent, however, is not necessarily required to increase awareness in network environments.
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For example, in Chapter 7 we show how we can discover patterns in access behavior of ma-
chines by analysis of the Samba metadata in the traٹc. Although this enables analysts to
see when, where, and how lesٽ are accessed in the network, the content of the lesٽ was not
considered.

2.8. Security visualization
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Figure 2.8: Extension of the security visualization taxonomy by Shiravi et al. [274]. The colors show the type of
visualization that wasmainly used in the papers. Labels in bold are papers that have been added to the survey
as part of the extension.

Over the years many diٶerent visualization techniques have been proposed to assist security
analysts in gaining insight in event logs and network traٹc. Several survey papers have been
written to categorize the techniques along diٶerent dimensions [17, 97, 125, 162, 169, 201,
274, 353, 354].

Shiravi et al. [274] for instance categorize visualization systems based on their input data
source (e.g., packet traces, intrusion alerts) and use case (e.g., host monitoring, attack pat-
tern detection), whereas a more recent survey by Zhang et al. [353] organizes the techniques
based on their data properties (e.g., tabular, hierarchical) and visualization tasks (e.g., de-
tection, correlation). Another survey by Dasgupta et al. [74] checks which visualizations are
suitable for streaming data analytics or static data analysis.

To get amore complete overview of current security visualization solutions, we extended Shi-
ravi’s survey [274] with the overview of Zhang et al. [353] and current state-of-the-art tech-
niques in network security visualization. These were searched on the web and in the latest
proceedings and journals of IEEE Symposium on Visualization for Cyber Security (VizSec),
IEEE InfoVis andVAST (2016-2018). Thiswas done by searching on the following keywords:
“anomaly detection”, “security visualization”, “situational awareness”, “network traٹc anal-
ysis”, “computer network logs”, “security event/system logs”, “alert visualization”, “intrusion
detection”, “misuse detection”, and “attack pattern visualization”.
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Figure 2.9: CyberPetri [15] visualizes the status of hosts by projecting log entries in the network hierarchy.

Figure 2.8 shows an extension of Shiravi’s survey where papers are color-coded according to
their visualization technique. The citations in bold are additions to the original survey. The
gureٽ shows that a wide variety of visualization techniques has been used over the years.
In the period 2004-2007 there was a trend to try out diٶerent visualization techniques by
proposing new schemes to visual encode network data. More recent papers [134, 352], how-
ever, no longer focus on a single type of visualization, but combine multiple techniques to-
gether in a multi-view system (as indicated by the “mixed” category).

Every survey provides a diٶerent viewpoint on the domain, but most consider data source
to be relevant for the categorization. Shiravi [274] for instance distinguishes between the
analysis of Netپow records, packet traces, and server logs. On a higher level of abstraction,
these can all be viewed as instances of event collections. Visualization of events in general has
been studied extensively. In the following sections we propose two taxonomies for security
and event visualization that enables us to bridge the gap between the two domains.

2.9. Taxonomy security visualization

In this taxonomy we categorize the visualization of security logs based on the type of events
they analyze, whether they focus on the visualization of alerts, and how these alerts are es-
tablished.

2.9.1. Host vs. Network events

Events can be recorded at the level of nodes or edges in the network (Section 2.7.1). Network-
level security visualizations show network events, obtained from non-intrusive recordings,
by explicitly visual encoding source and destination information in their solution. Visual-
izations such as NVisionIP [188] and TNV [120] for instance use a matrix visualization to
display IP information.
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Host-level security visualizations focus on the visualization of intrusive network traٹc record-
ings. Petridish [15] (Figure 2.9) for instance analyzes server logs by generating an overview
of the underlying network hierarchy. System logs and IDS alerts are visually encoded in the
hierarchy depending on the location of the host machine where they originate. The QCat
[328] system analyzes user downloads and login records by visualizing correlations inside
the multivariate data using a Parallel Coordinate Plot (PCP) [331]. In addition, users are
enabled to discover new anomalies by interactively deٽning and adding new axes to the PCP
plot.

Other security systems do not make assumptions about the event data to visualize. These
systems often oٶer the users the exibilityپ to let them decide on how to visual encode their
data. Commercial Security Information and Event Management software such as Solar-
Winds [281], IBMQRadar [149], HP ArcSight [144], and AlienVault [7] fall in this category.
Also visualizations by Keim et al. [167] and Hao et al.[134] enable users to decide which at-
tributes to visualize and how they should be represented.These systems can visualize data
in a exibleپ way, but Healey et al. [139] indicated that they provide little user guidance in
eٶectively discovering areas of interest. For these systems in-depth visualization experience
of the user is required to discover nontrivial insights.

Figure 2.10: Examples of alert-based network security visualization. Livnat et al. [203] (left image) visual-
ize network traffic alerts by encoding these based on what, when, and where they happened in the network.
SnortView [174] (right image) shows sequential patterns in Snort alerts by encoding the alerts using glyphs.

2.9.2. Alert vs. Non-alert

Security visualizations often focus on the visualization of alert collections that are generated
by some (third-party) Intrusion Detection System (IDS). For large alert collections enumer-
ating the alerts in for instance a tabular view does not give a suٹcient overview of the system.

IDS Rainstorm [3] for instance visualizes Stealthwatch [191] alerts by positioning the alerts
in a pixel visualization according to their IP information. The color of the pixels indicates
the severity of alerts over time. Livnat et al. [203] visualize network alerts by showing what,
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when, and where they have happened in the network. The result is a radial display with a
network topology in the center and diٶerent alert types deٽned in the outer rings of the
visualization (Figure 2.10).

General-purpose systems often do not explicitly use the notion of an alert. Systems such as
Tudumi [292], Girardin et al. [118], Rumint [66], and VISUAL [245] support the discovery
of erroneous behavior by visual encoding of the data in a technique of choice and aim to
present unusual patterns in the resulting image. Other systems, such as APT-Hunter [277],
support the detection of malicious logins in event recordings by enabling users to deٽne and
search for login patterns using a query language.

a) b) c)

Figure 2.11: Current Security Information and Event Management Systems (SIEMs) often provide flexibility to
generate high-level overviews of the data, but provide little guidance throughout exploration. Analysts require
in-depth knowledge about the data and construction of visualization to discover relevant patterns.

2.9.3. Internal vs. External

Depending on the type of security system, alerts either originate from third-party applica-
tions or are generated according to some internal model. External alert collections are often
precomputed on a data set and are considered as another input source for the visualization.
SnortView [174] for instance tries to discover attack patterns by encoding Snort alerts as
glyphs, positioned based on their time of occurrence. Daedalus-Viz [152] provides a real-
time visualization for Deadalus alert collections by visualizing them in a 3D environment.

Internal alert visualizations focus on the visualization of alert collections that are generated
according to some model or live classiٽcation algorithm. Landstorfer et al. [192] visualize
event log records as a stack of pixels, where every pixel denotes the frequency of a value
in that record. By means of ,lteringٽ uninteresting records can be removed from the data,
after which the classiٽer is reapplied to the remaining data. This way users can gain better
context-sensitive insights. Bigfoot [290] uses an internal classiٽcation algorithm for learning
commonBorder Gateway Protocol (BGP) routes over the Internet. They achieve this by con-
structing a shape, consisting of the route and a line from its end to its begin, and comparing
it to polygons classiٽed as normal.

Internal models enable users to adjust the deٽnition of an alert and reapply it to the data
set. Wagner and Healey et al. [139, 326] mention the need for security visualization to be-
come more exibleپ and to better intertwine analytical methods with visualization. In recent
research, more and more visual analytics solutions [12, 103, 196, 341] have been proposed.
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2.9.4. Taxonomy Overview
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Figure 2.12: Security visualization taxonomy. The rectangles show the number of publications per category.

Figure 2.12 shows a graphical overview of the proposed taxonomy. The rectangles show
the number of publications per category. Most of the security visualization systems have
been designed in the period 2004-2007. They were typically focused towards the design
of a new visualization by proposing a unique scheme to visually encode normal network
events or external alerts in a visualization of choice. After the survey of Shiravi [274] in 2012
more visual analytics systems have been proposed to gain insight in internal alert collections.
In addition, visualizations are no longer focused towards the visualization of either alerts
or normal traٹc. Systems such as OCEANS [56], Lamagna et al. [190], and Ocelot [16]
combine PCAP traٹc, IDS logs, and Netپow records to obtain a more complete overview of
the network. Still, the analysis of PCAP traٹc is currently limited to either owپ analysis or
the exploration of speciٽc properties of protocols such as DNS [261] or BGP [300]. In this
dissertation we explore DPI traٹc in greater detail.

2.9.5. Taxonomy Event visualization

Event visualization is not limited to security applications, but is also a popular topic in do-
mains such as healthcare [263] and business analytics [316]. Rind et al. [263] for instance

Figure 2.13: a) Systems such as Keshif [343] focus on the discovery of patterns in multivariate data records
whereas b) Coquito enables the analysis of multivariate data in event sequences.
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provide an overview of event visualizations that have been used to analyze Electronic Health
Records [142]. A survey by Du et al. [82] describes diٶerent strategies that analysts can use
to reduce the data volume and pattern variety in event sequences. Wongsuphasawat et al.
[336] elaborated on a number of data operations that are considered useful for the analysis
of temporal event sequences.

Figure 2.14 shows an overview of data operations that are supported in existing systems and
are considered relevant for the exploration of event sequences. More complex operations
such as data alignment or traditional data clustering can be obtained using a combination of
these operations. This is also illustrated in Figure 2.15.
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Figure2.14: Overviewofdataoperations that canbeapplied toevent sequencesor eventdata ingeneral. Apart
from data aggregation, all operations can be used as intermediate steps to performmore complex operations,
such as data alignment or distance-based clustering.
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Figure 2.15: Operations such as data alignment and clustering can be achieved by combining operators such
as augmentation, partitioning, sorting, and grouping.

2.9.6. Sequences vs. Records

Event visualizations typically focus either on the visualization of event sequences or the visu-
alization of individual event records. The aim of event sequence visualizations is to discover
patterns between event occurrences. This includes the analysis of sequential behavior (e.g.,
event ordering) and their (relative) time of occurrence. LifeFlow [338] for instance gener-
ates an overview of electronic patient health record sequences by ignoring time information
between events. The result is an icicle plot showing where overlap between patient treat-
ments exists using lteringٽ and alignment. Other systems such as MatrixWave [356] visu-
alize similarities and diٶerences between sequences by showing this overlap using a matrix
visualization (Figure 2.16).

Event record visualizations focus on the discovery of commonalities and diٶerences between
individual events. Events of interest can for instance originate from the same user, are sent
at the same moment in time, generate the same error code, etc. Especially when dealing
withmultivariate data, the task of discovering relevant patterns in this wealth of information
becomes a nontrivial task.

Tableau [230] and Keshif [343] are examples of systems that focus on the analysis of multi-
variate data records in general (Figure 2.13a). Systems such as TimeSlice [355] enable com-
parison between event records spread over time by enabling users to deٽne a hierarchy of
queries over the dataset, which are used to select events to display on the corresponding
timelines. Crystalball [58] tries to predict future Twitter events by visualizing current events
according to their time of occurrence, location, and topic.
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Figure 2.16: MatrixWave displays event sequence collections by visualizing the overlap in each position in a
matrix visualization. Matrices are positioned in a zig-zag pattern to represent the sequences from left to right.

2.9.7. Univariate vs. Multivariate

Visualizations that primarily focus on the visualization of event types, timestamps, and topo-
logical information are referred to as univariate, since they do not take additional metadata
into account throughout exploration.

Eventپow [223] (Figure 2.17) for instance enables users to transforman entire dataset of tem-
poral event records into an aggregated display, allowing researchers to analyze population-
level patterns and trends in event types. Also Coco [208] limits the exploration of event data
to event types and outcomes only. In order to cope with a wide variety of event types, Unger
et al. [312] use automated pattern mining techniques to rank transitions in event sequences
representing categorical states in lake sediment cores.

Other systems do take the metadata of events into account. These are also referred to as
multivariate event visualizations. Liu et al. [202] uses automated pattern mining techniques
to extract the most common user action sequences in click stream data. Beside type and
timestamp, ClickstreamVis also enables users to discover patterns in device type, error codes,
and browser information. Systems such as (s|qu)eries [351] and Coquito [181] enable users
to search for multivariate sequential patterns in cohorts through visual querying (Figure
2.13b). (S|qu)eries supports querying events via regular expressions on multivariate data
associated with events, whereas Coquito can incrementally construct cohort selections by
dragging and dropping constraints in a node-link diagram.
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2.9.8. Low vs. High-dimensional

The categorization in Section 2.9.7 classiٽes event visualizations whether they focus on a
single attribute or multiple attributes. The dimensionality of a visualization refers to the
extent to which these visualizations explore the full attribute space.

The literature deٽnes high-dimensionality of event data in two ways. Traditionally, event
data is considered high-dimensional if they (besides type and timestamp) consist of many
attributes. However, Gotz et al. [122] also deٽne event data as high-dimensional if they
contain a large variety of event types. Especially in Healthcare records, event types often
represent encodings of multiple attributes such as diagnoses, treatments, medications, and
lab tests. As a result, the number of event types can be in the order of thousands and more,
making exploration a diٹcult task.

If there are a few attributes, glyphs can be used. The traditional piano roll glyph display [85]
and PlanningLines [5] for instance visualize events as glyphs on timelines. Event types are
encoded in the color and shape of the glyph. This method however does not scale well when
dealing with thousands of event types or attributes.

DecisionFlowandSynopsis [57] are examples of visualizations that canprocess large amounts
of event types in a single attribute. Decisionپow enables the analysis of electronic health
records with over 3,500 event types by combining an incremental milestone-based data rep-
resentation with statistical analysis and an interactive owپ diagram. Frequency [246] and
Synopsis [57] try to visually summarize high-dimensional sequences using automated pat-
tern detection techniques. Synopsis uses a two-part representation. The rstٽ part automati-
cally discovers overlap between the sequences. The second part visualizes corrections (e.g.,
event insertions and deletions) in a separate view to enable full reconstruction of the original
sequence. In Chapter 5 we present a visualization technique to visualize large amounts of
attributes in a multivariate event visualization.

Figure 2.17: a) EventFlow [223] is an extensive novel tool to summarize univariate event sequences, search
for temporal patterns, and apply data transformations to gain new insight in event collections. b) Decision-
flow [122] enables high-dimensional analysis by introducing a milestone-based aggregate data structure and
corresponding temporal query methods.
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2.9.9. Taxonomy Overview
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Figure 2.18: Event visualization taxonomy. The rectangles shows the number of publications per category.

Analogously to the taxonomy for security visualizations, Figure 2.18 shows a graphical overview
of the taxonomy for event visualizations. Most of the event visualization techniques are fo-
cused towards the analysis of temporal patterns in event sequences. Especially starting from
2008 many event sequence visualizations focused on the analysis of event types and times-
tamps. Monroe et al. [225], Wongsuphasawat et al. [339, 340], and Wang et al. [329] pro-
posed diٶerent techniques to eٶectively search for patterns in univariate event sequences.

Univariate record visualizations are typically limited to the visualization of a single attribute
by plotting the events in a scatterplot or on a timeline. The piano roll displays of Vrotsou
et al. [323], Eick [85], and Aigner [5] mainly focus on discovering where and when par-
ticular events have happened rather than studying commonalities and diٶerences between
sequences of events.

In the last few years, more focus has been on event visualizations to discover patterns in
high-dimensional andmultivariate data. Similar to security visualizations,Wongsuphasawat
et al. [340] use ranking and similarity metrics to ndٽ comparable categorical records and
similar event sequences. To this end, these systems have been categorized as both record
and sequence visualizations.

Boundaries between categorizations are not strict. Especially the distinction between high-
dimensional and low-dimensional visualization can be diٹcult. Most of the papers that
claim to analyze high-dimensional data were either working with 1,000 event types or more
or analyzing more than 10 diٶerent attributes besides type and timestamp. We therefore
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aimed to classify the papers according to these guidelines.

2.10. Bridging gaps between Event and Security visualization

The variety in security visualization surveys and terminology makes it diٹcult to obtain
an overview. From a data perspective however, many of these data sources can be simply
modeled as event collections. To bridge the gap between security and event visualization,
we propose a comparison of the techniques by combining the taxonomies in Section 2.9.4
and 2.9.9. Figure 2.19 shows an overview of all analyzed event and security visualizations.
References towork in event visualizations are underlined, references to security visualization
are not. The contributions of this dissertation are highlighted in red in Figure 2.19. The
numbers in the blocks refer to the chapter numbers where each contribution is covered.

Most of the event visualizations focus on the visualization of univariate data. In contrast to
security visualizations, few event visualizations focus on the analysis of individual records.
Similarly, few security visualizations focus on the analysis of event sequences.

Event sequence visualizations in general are classiٽed as host-based events, since most of
the visualizations assume that events have a source or sequence_id. In addition, research
by Unger et al. [312], Wongsuphasawat et al. [340], and Kwon et al. [185] were classiٽed as
alert based visualizations, since they use automated techniques to determine the relevance of
event sequences and rank or cluster them accordingly. Security systems byHuyn et al. [148],
Angelini et al. [12], and Liao et al. [200] also use this kind of functionality to determine the
severity of an alert or to gain insight in larger alert collections.

The taxonomy illustrates that the amount of overlap between security and event visualization
is surprisingly small. Most of the rectangles either exclusively consist of references to security
or event visualizations. However, security visualizations in the categories host and other
can also be used to study event data. Especially for the visualization of multivariate data in
event records, the systems by Hao et al. [134], Keim et al. [167], andWalton et al. [328] can
be useful. Vice versa, systems such as (s|qu)eries [351] or ClickstreamVis [202] in turn can
be very useful in studying sequential patterns in security event logs.

The taxonomy in Figure 2.19 shows that existing security and event visualizations cover a
broad spectrum of the proposed categorization. However, for CERTs and SOC members
there are still challenges in the area of visualization and in particular visual analytics. Most
of the security record visualizations do not support the analysis of Deep Packet Inspection
data or do not use internal automatic network intrusion detection algorithms to assist in
the detection of anomalies. Furthermore, there are no visualizations that focus on the ex-
ploration of high-dimensional data in sequences of network traٹc. Although (s|qu)eries
[351] enables users to visually query data for patterns, they provide little support for the
exploration of unknown patterns or attributes of interest using visualizations or automated
techniques. In the next chapters we investigate how to gain better insight in event collec-
tions by enabling internal automated support and sequential analysis in high-dimensional
multivariate network traٹc.
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Figure 3.1: Network traffic exploration at the level of semantics through the creation of three selections of
interest in parallel.

M ost network traٹc analysis applications are designed to discover malicious activity by
only relying on high-level ow-basedپ message properties. However, to detect secu-

rity breaches that are speciٽcally designed to target one network (e.g., Advanced Persistent
Threats), Deep Packet Inspection and anomaly detection are indispensable. In this chap-
ter, we focus on how we can support experts in discovering whether anomalies at message
level imply a security risk at network level. In SNAPS (Semantic Network traٹc Analysis
through Projection and Selection), we provide a bottom-up pixel-oriented approach for net-
work traٹc analysis where the expert starts with low-level anomalies and iteratively gains
insight in higher level events through the creation of multiple selections of interest in paral-
lel. The tight integration between visualization and machine learning enables the expert to
iteratively reٽne anomaly scores, making the approach suitable for both post-traٹc analy-
sis and online monitoring tasks. To illustrate the eٶectiveness of this approach, we present
example explorations on two real-world data sets for the detection and understanding of
potential Advanced Persistent Threats in progress.

3.2. Semantic Network traffic Analysis through Projection and Selection

One of the main challenges in the area of network traٹc analysis is how to detect when a
network is being exploited. Especially for critical infrastructures, such as power plants [60],
hackers nowadays are willing to design complex viruses to maximize the damage in one spe-
ciٽc infrastructure. The main diٹculty with Advanced Persistent Threats (APTs) [280] is
the involvement of domain knowledge such that their traٹc can no longer be distinguished
from regular activity by simple inspection of high-level properties, such as message length
and destination address. Current methods [66, 174, 175, 215] focus on the analysis of these
properties, because in practice they have shown to be suٹcient for the discovery of tradi-
tional attacks [71, 214]. The fact that these techniques consider traٹc content as a black box
makes them unaware of anomalies at the level of semantics.
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To ensure that systems and data in the network are secure from APTs, the content of the
traٹc has to be taken into account. For example, we are not only interested in which host
sends packets to a particular host, but we are also interested in whether the action inferred
by these messages represents the access to an uncommon function call or leٽ in the net-
work. The heterogeneity and abstraction level of the data makes it very diٹcult to decide if
a message is truly malicious. We believe that the greatest insights can be obtained by com-
paring anomalies to similar parts of traٹc and try to understand how they diٶer from each
other with respect to context and structure. In order to gain this insight, we propose a new
approach that enables security experts to discover high-level security risks, starting from a
collection of automatically classiٽed low-level anomalies, through the use of selection and
projection. More speciٽcally, our main contributions are:

• A novel explorationmethod for the analysis of raw network traٹc, enabling the expert
to inspect and compare speciٽc parts of the traٹc in parallel while preserving context;

• A tight coupling ofmachine learning and visualization that assists experts in detecting
malicious traٹc, through iterative reٽnement of classiٽer parameters;

• The ability to gain statistical insight in how messages diٶer from regular traٹc and
why a message was classiٽed as malicious.

The chapter is structured as follows. First, related work is discussed in Section 3.3. Next,
the scope and approach for traٹc analysis is discussed in Section 3.4. In Sections 3.5, 3.6,
and 3.7 an overview of the system is presented after which visualization, classiٽcation, and
interaction are described. In Sections 3.8 and 3.9 we provide two example explorations on
real-world data sets and discuss the limitations of the approach. Conclusions and future
work are presented in Section 3.10.

3.3. Related Work

Network traٹc analysis is an extensively studied topic, covering a wide range of techniques.
We give a broad overview ,rstٽ followed by a detailed discussion on pixel-based visualization
techniques.

3.3.1. Data

From a data perspective, current analysis techniques can be grouped into two categories:
byte-oriented and attribute-oriented analysis.

In byte-oriented analysis, network messages are considered as a sequence of bytes enabling
visualization techniques to analyze the full payload of a network message. These visualiza-
tions typically provide insight in the traٹc by encoding the byte sequences in text or pixels.
The binary rainfall [66], digraphs [65] and malware images [231] are well-known examples
in this category. Anomaly detection systems for this type of analysis typically rely on byte
distributions and pattern matching to discover undesired content. Since byte sequences do



3

40 3.3. Related Work

not contain any information about which bytes together represent an attribute in a message,
these detection methods often work poorly for anomalies at the level of attributes.

In attribute-oriented analysis, messages are dissected according to their protocol structure,
thereby gaining knowledge about the actual values that were sent in the message. The re-
sult of dissecting a message typically is a collection of attributes and values. The presence
of an attribute or value is determined by the type of network message, thereby signiٽcantly
increasing the heterogeneity of the data. Current methods often limit their analysis to high-
level protocols such as TCP and IP, thereby only relying on common ow-basedپ attributes
such as IP addresses, port numbers, and message lengths [174, 210, 352]. For a more com-
plete overview, we refer to Chapter 2.

There are also examples where both byte structure and attribute analysis are taken into ac-
count. For instance, the open source application Wireshark [63] is an extensive protocol
analyzer that can dissect network packets and display the payload in a (hierarchical) textual
representation. Especially for debugging applications, the wealth of information provided
byWireshark can help the expert to analyze traٹc in great detail. The software unfortunately
does not assist the expert in ndingٽ anomalies and can become a burden when analyzing or
monitoring large network samples.

3.3.2. Visualization

In SNAPS we use a pixel-based visualization that conveys the global structure of network
messages as well as anomalies in that structure. A message is displayed as a horizontal se-
quence of pixels. Pixel-based visualizations have been used often for network traٹc analysis,
some examples are:

• Binary rainfall [66] by Conti et al. visualizes network messages as a single line of
pixels where pixels are colored based on protocol type, various byte encodings, and
frequency. They showed that the visual encoding of network traٹc does not have
to be complex in order to discover nontrivial patterns. Their byte-oriented approach
unfortunately makes the method unsuitable for the detection of APTs.

• PortVis [215] by McPherson et al. uses a color-based grid visualization to visualize
the amount of network activity between port numbers. By using a zoom lens, the user
can obtain port number information to trace back the cause of the anomaly.

• IDS rainstorm [3] by Abdullah et al. visualizes Stealthwatch [191] intrusion detection
alerts by showing the severity of alerts over time using a set of rectangular regions that
represent a large continuous range of IP addresses.

Previous methods construct an image to represent the values for one or two attributes in the
data. To cover the wide variety of attributes, in SNAPS we construct an image to represent
the full range of attributes.

A method speciٽcally designed for multivariate data exploration and closest to our tech-
nique is the Pixel Carpet visualization by Landstorfer et al. [192]. In this visualization every
log record is visualized as a stack of pixels, where every pixel denotes the frequency of a
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Figure 3.2: Data acquisition by dissecting PCAP packets (A) to PDML trees (B) after which they are serialized
into one (sparse) multivariate table (C).

value in that record. By means of ,lteringٽ uninteresting records can be removed from the
data, after which the frequencies of the remaining records are updated. Although our visu-
alization method is similar to the stacked pixel approach in the Carpet visualization, there
are diٶerences. First, the Carpet visualization is limited to a single view, indicating that it
is impossible for experts to zoom in on a speciٽc subset without losing context of other ac-
tivities over time. We provide a time view to maintain awareness of temporal patterns and
enable experts to duplicate pixel views before applying new .ltersٽ Second, the tight integra-
tion of lteringٽ and recomputing statistics causes the frequency analysis to overٽt the data
when ltersٽ become too speciٽc. In SNAPS, experts can reٽne classiٽers when necessary
or train a new classiٽer on a subset of the data. Third, Landstorfer et al. already indicate
that their method is designed to work with a low number of attributes, while our approach is
designed to work for hundreds of attributes. Finally, our selections of interest enable experts
to construct more complex queries using boolean search and regular expressions.

In summary, current methodologies are either focused on the visualization of high-level
message attributes or the visualization of unstructured low-level representations. Current
methods that do consider message attributes typically consider only a few ow-basedپ at-
tributes.

3.4. Problem statement

With the vast amount of information that is sent over networks, one of the main concerns is
to know when something undesired is being sent. Especially for critical infrastructures, the
presence of malicious traٹc can have severe if not life-threatening consequences.

The involvement of domain knowledge in APTs makes the inٽltration of these viruses (typ-
ically through social engineering) in networks nearly impossible to prevent. Once the threat
is established, we can analyze unencrypted internal network traٹc for anomalies that arise
during the APTs exploitation phase. As a consequence, traٹc from or to external sources is
considered outside this scope.

In practice, it is possible for messages to consist of an arbitrary number of protocols, where
one protocol can even occurmultiple times. Since semantic attacks happen at the application
layer of the network protocol, we restrict the analysis of messages to the following protocols:
(DCE)RPC, SMB2, and S7 [278]. (DCE)RPC are application protocols to send remote proce-
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dure calls over a network. SMB2 is typically used for leٽ management in a network, whereas
S7 is a classiٽed industrial control protocol by Siemens for controlling low-level hardware
components. We use ETH, IP, and TCP protocol information to trace the anomalies back
to physical entities in the network. To avoid the signiٽcant increase in attribute space due to
protocols occurring multiple times, analysis of messages is limited to the rstٽ occurrence of
every protocol.

3.4.1. Data acquisition

Beforewe can analyze network traٹc in greater detail, we rstٽ need to analyze network traٹc
with protocol semantics. We use the Wireshark dissector to convert a raw network message
to a so-called Packed Detail Markup Language (PDML) parse tree, describing on a per pro-
tocol basis the values and attributes that are present in that message. Figure 3.2b shows an
illustration of how PDML trees are structured. Attributes in a protocol are structured hier-
archically. In general, network messages consist of multiple protocols, each with their own
purpose and diٶerent level of abstraction. Depending on the protocol semantics, attributes
in protocols can represent numerical ranges (e.g., tcp.srcport), strings (e.g., ip.src),
or boolean values (e.g., tcp.flag.SYN).The presence of a protocol, attribute, or value not
only depends on the type of message, but also depends on the context in which the message
was sent.

More formally, let 𝑆 represent the set of attributes that the expert wants to analyze. Further-
more, let 𝑃𝐷𝑀𝐿(𝑚) represent the PDML tree of message 𝑚. Attribute 𝐴 ⊆ 𝑃𝐷𝑀𝐿(𝑚) if
and only if there exists a path 𝑃 = [𝑝ኺ, 𝑝ኻ, … , 𝑝፧] from root to leaf in 𝑃𝐷𝑀𝐿(𝑚) such that
𝑝ኺ.𝑝ኻ. ⋯ .𝑝፧ = 𝐴. 𝐴 is also referred to as the serialization of 𝑃. Finally, let 𝑣𝑎𝑙(𝐴) represent
the value stored in 𝑝፧ of 𝐴. We can nowmodel a message𝑚 as a set of (𝐴, 𝑣) pairs such that:

𝐴 ∈ 𝑆 , and (3.1)

𝑣 = {𝑣𝑎𝑙(𝐴) if 𝐴 ⊆ 𝑃𝐷𝑀𝐿(𝑚)
undefined otherwise

(3.2)

Since the set of all possible attributes is too large to analyze, in SNAPSwe use domain knowl-
edge and a large sample of network traٹc to determine which attributes are worth analyz-
ing. The resulting table after serializing the collected PDML trees can be found in Figure
3.2c. Since the set of possible attributes is much larger (500 or more) than the set of at-
tributes contained in a message (order of 10s), the data can become quite sparse, increasing
the complexity of visualizing the payload data.

Using our previous model, we can now formulate the analysis task for the detection of APTs
as trying to gain insight in the presence, description, temporal behavior, and rarity of these
(attribute, value) pairs. The serialization of PDML trees to one multivariate table enables
us to compare diٶerences and similarities between messages at the level of attributes. Since
the presence of one attribute depends on the presence of other attributes, showing values of
multiple attributes simultaneously enables us to gain insight in these dependencies. In order
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to make the visualization of alerts and patterns feasible for a large number of attributes, we
chose a pixel-based visualization approach.

3.5. SNAPS: Selection and Projection

Network traٹc exploration is a challenge due to the large amount of data that is being gener-
ated in a relatively short period of time. Furthermore, the heterogeneity and complex struc-
ture of the traٹc content adds a new dimension to the analysis of network traٹc. We cannot
expect the expert to know the meaning of every dissected value or attribute. However, the
expert should be able to determine the severity or cause of an anomaly by inspecting and
comparing similar type of messages in diٶerent contexts. To support this, we need a scal-
able interactive method to simultaneously explore low-level anomalies, while maintaining a
high-level overview.

We tackle the scalability problem by visualizing network traٹc using a pixel map [164]. The
high “data-to-space” ratio of pixel maps enables us to visualize large amounts of attributes
and network messages in a limited amount of screen space. Furthermore, to maximize the
speed of analyzing traٹc, we aim for a computationally cheap classiٽcation method using
histograms. The level of granularity in which traٹc is analyzed is determined by lteringٽ on
attributes or values in the traٹc. In the world of relational algebra [32], these operations are
referred to as projection and selection respectively. To enable the simultaneous exploration
of traٹc in local and global contexts, we do not limit the exploration to one selection, but to
a number of selections of interest (see Section 3.5.1) enabling the expert to:

• Drill down: inspecting alerts against diٶerent subparts of the network, while remain-
ing aware of the rest of the traٹc, or

• Scatter: creating multiple views to keep an eye on critical or suspicious entities in the
network (e.g., hosts, .(lesٽ

To tackle the problem of dealing with large amounts of false positive alerts, we use a human-
in-the-loop approach [264] that enables the expert to inspect and reܦne classiٽcation results
on a per selection basis. Bymeans of color rules, the expert is able to highlight speciٽc events
in the traٹc for which the severity is already known. Figure 3.3 shows a schematic overview
of the SNAPS exploration process. When trying to ndٽ potential virus attacks, time is of
the essence. The earlier anomalies in the network can be detected, the faster we are able to
manage the attack. For this reason, we designed the system in such a way that it is suit-
able for both post-traٹc analysis and live monitoring. Although the traٹc dissection by
Wireshark is rather computationally intensive to be used for real-time monitoring, there are
(more complex) alternatives, like the Bro dissector [244], that are suitable for obtaining near-
real-time dissections. To assist the expert in exploring and explaining traٹc alerts, we use
veٽ coordinated views as depicted in Figure 3.5. For each view we describe its functionality
and design decisions. For the demonstration of the functionality in practice, we refer to the
supplementary video .ڂ

https://www.youtube.com/watch?v=aYywTOYjYDAڂ
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Figure3.3: TheSNAPSworkflowmodel fornetwork traffic exploration. Theexpertuses theoverview tomonitor
the presence of alerts in the selections of interest. Upon the discovery of an alert, the expert tries to gainmore
insight by inspecting its location and value. Depending on the familiarity and rarity of the inspected value(s)
and attribute(s), the expert assesses the severity of the alert by iteratively inspecting: the occurrence of other
values in the message; the value distribution of an attribute; or the presence of a message value over time.
Depending on his findings, the expert either decides to ignore the alert, prevent the alert from happening by
refining the classifier, or refines his selections of interest to analyze the alert in a different context.

3.5.1. Pixel viewer

For every selection of interest, the pixel viewer visualizes message payload by creating an
image where the horizontal axis represents the attribute space the expert is interested in
and the vertical axis represents the collection of network messages. The result is that every
message corresponds to a single line of pixels, where the brightness of a pixel 𝑝።፣ represents
the rarity of message 𝑖 at attribute 𝑗 according to Section 3.6. Since it is hard to distinguish
colors for small objects [289], we use a discrete grayscalemap (Figure 3.5) consisting of three
colors: pixels are colored black if the message does not contain the corresponding attribute,
gray if the value in that message is not considered rare and white if the value in the message
is considered to be rare. The rarity of a message as a whole is visualized by prepending
the image with an additional column. Values and attributes in messages become visible by
inspecting pixels with a zoom lens (Figure 3.5b).

Besides the grey shades that indicate rarity, a subtle hue can be added to message attributes
to indicate diٶerent protocols (Figure 3.4). Besides coloring attributes, we enable the expert
to discover patterns by coloring pixels according to their value ormore complex expressions.
To improve the distinction between pixels and prevent pixel colors from spreading to their
neighboring cells, tiles of 2 by 2 physical pixels are used instead. As soon as an incoming
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Figure 3.4: Attribute ordering without (left) and with (right) frequency clustering. Attributes are colored ac-
cording to their protocol.

message adheres to some color rule 𝑟, SNAPS creates a marker in front of the pixel view
whose color corresponds to 𝑟. In situations where multiple color rules apply, SNAPS creates
a marker according to the rstٽ matching color rule. Figure 3.5 shows an example how col-
oring is applied.

Similar to the pixel visualization by Conti et al. [66], we use the notion of a radar to replace
old messages with new ones. In contrast to traditional scrolling, previous messages are not
shifted at the arrival of new data, thereby making the visualization more stable when ana-
lyzing traٹc at a larger pace. A direct consequence of visualizing messages in a sequential
fashion is that the inter-arrival time between messages is no longer visible. To make the ex-
pert aware of these changes in ,owپ the radar creates a green marker in front of the image
whenever the timestamp diٶerence between messages is larger than a second. The distance
between green markers is an indicator for the amount of traٹc that is being sent in between
timestamps. For more detailed information about temporal behavior, the expert can use the
Time view (Section 3.5.2).

Attribute ordering

When combining multiple PDML trees into one attribute space, the ordering in which at-
tributes should be positioned is not uniquely deٽned. To illustrate the latter, consider two
message 𝑚ኻ and 𝑚ኼ with attribute sequences [ 𝐴, 𝐵, 𝐶 ] and [ 𝐴, 𝐵, 𝐷 ] respectively. Al-
though the ordering of attributes in a message depends on its structure, when combining
the attribute space of two messages into one, it is undeٽned whether attribute 𝐶 should pre-
cede 𝐷 or vice versa. Although this ordering does not inپuence the classiٽcation result of a
message, it can help the expert to localize attributes in the visualization more quickly. One
way to solve this is to sort attributes alphabetically. Since the hierarchy is implicitly stored
in the attributes, sorting attributes alphabetically causes the attributes with the same PDML
paths to be grouped together. Any logical ordering between siblings (e.g., header attributes
before payload), unfortunately, may no longer be preserved. To solve the second issue, we
sort the siblings within each group according to their frequency. The eٶect of sorting at-
tributes with and without frequency analysis is illustrated in Figure 3.4.
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Selections and Projections

Asmentioned earlier, selection and projection enable the expert to inspect anomalies against
diٶerent parts of traٹcwhile focusing on a speciٽc subset of attributes. A downside of apply-
ing ltersٽ is that the expert is no longer aware of alerts that were present in previous settings.
One can imagine, however, that an expert wants to keep an eye on speciٽc entities in the
network (e.g., a critical host) while staying aware of other activities. To prevent the expert
from losing context, we enable the expert to create multiple selections of interest by creating
multiple pixel views in parallel.

When creating a new view 𝐵, by default, projection, selection, and color settings are inher-
ited from view 𝐴 where the lteringٽ was initiated. This enables the expert to continue the
exploration without having to reapply every setting in the new view. The histograms for view
𝐵 are constructed by revisiting the network traٹc within data window 𝜔, only considering
messages that are valid with respect to the current selection. Network messages in 𝐵 are
visualized in the pixel view if and only if these messages are also visually present in 𝐴. This
way, messages in 𝐵 initially are always a subset of the messages in 𝐴 enabling the expert to
see the impact of applying a new selection of interest. By means of the Time view, the expert
can revisit earlier parts of traٹc that are outside the scope of the pixel view.

In order to gain insight in anomalies within a speciٽc selection of interest, the expert is
enabled to train a separate classiٽer for that selection. Since highly speciٽc selections may
result in inaccurate alerts due to overٽtting, by default, alerts with respect to the histograms
of the parent view are shown in the visualization. Since both anomaly scores are maintained
in parallel, the expert can toggle between local and global anomaly scores. An overview of
the current selections is shown by means of a tree structure (see Figure 3.5e). The expert
can add, remove, show or hide selections whenever necessary. We enable the expert to apply
new settings simultaneously to all views, the selected view or the selected view along with its
descendants.

3.5.2. Time view

The Time view shows an overview of the number of messages that are sent over the last 𝑛
time units. By selecting an attribute 𝐴, the expert is enabled to inspect the distribution of
the values of 𝐴 over various periods in time. Depending on the selected pixel view, only
messages that are valid with respect to that selection are shown in the Time view. Upon the
arrival of new data, the line chart is shifted to the left, causing messages older than 𝑛 time
units to be no longer visible. To prevent the chart from cluttering, only the top𝑚 values in
𝐴 are shown that are either most frequent, most rare, or selected by the expert. Remaining
values are grouped in a miscellaneous category.

The Time view enables the expert to scroll back to earlier parts of traٹc. To make the expert
aware of the time interval that is spanned between the oldest and the newest message in the
selected pixel view, a black window is rendered in the Time view. Since the time interval of
the pixel view depends on the inter-arrival time between messages in that view, the width
of the visualization window may vary over time. The expert can scroll back to earlier parts
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of traٹc by dragging the visualization window along the time axis after which the selected
view and all descendants are updated. Here traditional scrolling is preferred over a radar,
since experts can determine their own rate in which the views have to be updated.

When scanning messages sequentially, there is a choice between message-oriented versus
time-oriented scanning. In message-oriented scanning, messages are scanned at a xedٽ rate
causing the pixel visualization to be updated at a constant rate. Since the inter-arrival time
between messages is not taken into account, the update rate of the Time view varies over
time. In time-oriented scanning, messages are grouped in xedٽ time intervals such that the
Time view is updated at a regular pace. Since multiple messages can adhere to the same time
interval, the refresh rate of the pixel views is no longer constant. In case of for instance traٹc
bursts, message-oriented scanning may be preferred over time-oriented scanning if the data
contains samples of malicious activity (e.g., .(le-scanٽ If a data burst is not of interest, the
expert can switch to time-oriented scanning to analyze these messages at a higher rate.

3.5.3. Attribute view

The Attribute view (Figure 3.1d) enables the expert to inspect the frequency and rarity of
attributes and values that are present within data window 𝜔. Depending on the selected
pixel view, only messages that are valid with respect to the pixel view selection settings are
visible in the Attribute view. The tree structure on the left shows an overview of all attributes
in𝜔 by taking the union of all PDML paths in the PDML trees of messages in𝜔. The expert
can adjust the projection settings of the pixel view by changing the visibility of attributes
using checkboxes. Only attributes that occur in the projection settings are taken into account
during classiٽcation. When selecting an attribute, the table on the right shows the value
distribution of that attribute. The expert can inspect the frequency of values by means of
sorting and .lteringٽ Besides frequency, the rarity of a value (see Section 3.6) is visualized
using a bar.

One major problem of anomaly detection is that there is no intrinsic diٶerence between a
malicious value and a new incoming value. One can imagine however that the creation of
a new leٽ in the network is not necessarily harmful. To keep the number of false alerts in
such attributes minimal, the expert can adjust the rarity thresholds of the histograms on a
per value basis (or bin basis for numeric attributes). Dominating values can be removed
from the histogram by means of a checkbox in front of the value. The rarity threshold that is
applicable to a certain value is shown as a vertical bar in the previouslymentioned rarity bars.
Thresholds can bemodiٽed by either dragging the threshold in the bar visualization or llingٽ
an exact value in a popup (Figure 3.1f). To prevent the expert from having to adjust every
threshold manually, he is enabled to select multiple values at the same time or to specify a
global rarity threshold at the level of an attribute or pixel view. In other words, if there is no
threshold set for a value 𝑣 in (𝐴, 𝑣), the threshold for 𝐴 is used instead. Alerts for speciٽc
values and attributes can be ignored during their classiٽcation by setting the rarity threshold
to 100%. The eٶect of modifying a threshold is immediately reپected in the brightness of
the pixels. The expert can save and load thresholds on a per pixel view basis through import
and export functionality.
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3.6. Classification

Due to the large number of attributes per message, it is diٹcult for the expert to manually
spot anomalous values in the traٹc. To assist the expert in ndingٽ these anomalies, a simple
but eٶective histogram-based classiٽer is used. Histograms in general are computationally
cheap to maintain, easy to understand and can be applied to both numerical and categorical
attributes. Their ability to be updated in an incremental fashion makes them both suitable
for oٺine and online analysis. Anyhow, the SNAPS approach is independent of the chosen
classiٽer, and developing better classiٽers is a topic for future work.

3.6.1. Model

In Chapter 2 we identiٽed three types of anomalies, namely point, contextual, and collective
anomalies. Network messages are considered point anomalies whenever they are anoma-
lous with respect to the entire data set (e.g., the invocation of a deprecated function call).
Messages that are only anomalous in a speciٽc context (e.g., the access of a restricted leٽ
by an unauthorized user) are contextual anomalies. Collective anomalies are collections of
messages that together are anomalous with respect to the entire data set. Since automatic
collective anomaly detection methods are rather error-prone for highly heterogeneous and
time-dependent data, they are considered outside the scope of this work. Instead, we pro-
vide the expert a Time view where collective patterns can be visually inspected over diٶerent
periods in time.

In our online classiٽcation approach, network traٹc is considered to be relevant within time
window 𝜔. Upon the arrival of new data at current time 𝑡, messages older than 𝑡 − 𝜔 are
removed from the window and replaced by new ones. For every incomingmessage, the clas-
siٽer determines the rarity of values in that message after which the histograms are updated.
When training a classiٽer on a new subset of traٹc, the minimum size of the training set 𝒯
with respect to that subset is determined using Yamane’s sample size formula [154].

3.6.2. Anomalies

In order to decidewhether a networkmessage is a point anomaly, we rstٽ have to deٽnewhen
a value in the message is considered to be anomalous. Let 𝑇 = (𝐴, 𝑣) be an attribute value
pair in message 𝑚. Let #𝐴 denote the number of messages in the data set with attribute 𝐴
other than undefined and let#𝑣 denote the number ofmessages with (𝐴, 𝑣). 𝑇 is considered
to be rare if and only if:

1 − #𝑣
#𝐴 > 𝜏 (3.3)

where 𝜏 represents a rarity threshold deٽned by the expert. In case where #𝐴 is smaller than
Yamane’s sample size with respect to𝒯, every value is considered to be rare, since the number
of samples in this attribute is too low to build an accurate histogram. undefined values are
excluded from the histograms, since they predominate the distribution of sparse attributes.
Tominimize the number of false positive alerts, values for numeric attributes are binned. By
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Figure 3.6: Multiselection of values and corresponding query.

default, the bin size 𝑠 of a numeric attribute is computed by applying Scott’s rule [271] on
the training set after removing outliers:

𝑠 = 3.5𝜎
𝑛ኻ/ኽ

Scott’s rule is chosen for its simplicity, since we expect bin sizes to be reٽned during explo-
ration.

For the detection of contextual anomalies, the expert is enabled to train a new classiٽer on a
selection of interest (see Section 3.5.1). This enables the expert to inspect distributions and
look for anomalies on a smaller subset of the traٹc.

3.7. Interaction

To enable querying in SNAPS, three operations are supported:

• inspecting values;

• color messages according to rules;

• creation of selections of interest.

For the inspection of values, the notion of a lens is used, showing an enlarged part of the
pixel visualization where additional information such as the values and attributes of pixels
become visible. Upon the detection of an alert, the expert can stop themessage scanning and
lock the lens to inspect values in more detail. The rarity score of a value is shown by means
of a popup (Figure 3.6). The expert is enabled to inspect the contents of a pixel in even more
detail by switching to the Wireshark interface with one click of a button.

Visual coherence between views is achieved by using color. Hovering themouse over a value
highlights all messages in the pixel view with that value. Similarly, hovering the mouse over
a message reveals the location of that message in other pixel views (Figure 3.1b).

Experts can create selections of interest using default, text-based and table-based .lteringٽ To
improve interaction speed, SNAPS provides default lteringٽ functionality when the expert
selects a pixel, value, or attribute. By means of context menus, the expert can choose to lterٽ
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Figure 3.7: In view a) the sudden change in S7 traffic raises alerts in attribute s7.rosctr. The Wireshark
interface shows that alerts are coming from commands to reprogram the PLC. Creating viewb) only containing
these commands shows that fourmachineswere responsible for sending these commands in the last 72 hours.

the traٹc by the presence or absence of the selected value, sending or receiving IP address,
or by the conversation in which the message occurred. For more complex queries, a textual
interface is provided to assist the expert in creating a query. When writing the query, the
expert is instantly notiٽed if the query is syntactically correct. Depending on the part of the
query that is being constructed, the expert receives a list of possible attributes, operations,
or values that were found in the selected view.

Since the usage of brackets in a query can aٶect the readability of a query in a negative way,
an alternative form of visual querying similar to Excel’s advanced criteria lteringٽ [218] is
introduced. Queries can be represented as a table where the columns represents attributes
and a cell represents a condition (𝑜𝑝, 𝑟𝑒𝑔) where 𝑟𝑒𝑔 represents a regular expression and
𝑜𝑝 the corresponding operation (either ==, ! =, < (=), or > (=)). Since a message can
have at most one value per attribute, the query is constructed by taking the conjunction of
all nonempty conditions in a row, after which a disjunction is taken over all rows in the table.
Figure 3.7 shows an example of the resulting encoding. We can use the same encoding to
enable the selection of multiple pixels into a new lteringٽ condition. To prevent the selection
border of two neighboring pixels from occluding each other, selection borders are drawn
using a contour algorithm. For a more concrete overview of the interaction, we refer to the
supplementary video in Section 3.5.

3.8. Use cases

To illustrate the eٶectiveness of our approach, we tested the application on two types of data
sets. The rstٽ data set is obtained by recording one day of internal network traٹc from a
university. The data consists of approximately 400,000messages and 500 attributes sent by 25
hosts, initially training the classiٽer on 30,000messages corresponding to one hour of traٹc.
The second data set consists of approximately 500,000messages, 650 attributes, 10 to 15 hosts
representing one week of S7 traٹc from a governmental industrial control system. For this
data set, the classiٽer is initially trained on 100,000 messages corresponding to one day of
traٹc. In the use cases, 𝜔 is set to half a day and three days of network traٹc respectively.
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3.8.1. University

We initially start the exploration by scanningmessageswithout any selections of interest. The
network data contains a wide variety of TCP, DCERPC, and SMB2 traٹc (view 1, Figure
3.5a). Since we are interested to ndٽ anomalies at application layer, we create a selection
of interest 𝐵 only containing SMB2 traٹc (view 2, Figure 3.5a). To obtain more reliable
classiٽcation results for SMB2 traٹc, we switch to the local classiٽer trained on 𝐵. Finally,
predominating values in the data such as Ioctrl request are ignored during classiٽcation
and the rarity thresholds of attributes like smb2.file_name were raised to reduce the
number of false positives in the visualization.

After scanning 30 minutes of traٹc data, in approximately 5 minutes, we noticed a group
of anomalies in 𝐵. The lens view showed that the alert was raised by a non-zero value in
attribute smb2.nt_status (Figure 3.5b). To receive automatic notiٽcation of this alert,
a color rule for this condition is applied (indicated by the cyan markers). By creating a new
selection of interest 𝐶 for which smb2.nt_status < 0 and specifying that the pixels
showing the source IP address of such messages should be colored green, we can see that
these, what turned out to be SMB2 buٶer size warnings, were coming from the same IP
address (view 3, Figure 3.5a). We close 𝐶 and continue exploration.
Around 10:27 AM, an SMB2 burst was detected as depicted in Figure 3.1a. Selecting the
smb2.cmd attribute in the Time view of 𝐴 shows an increased number of lesٽ being cre-
ated in the network (Figure 3.1e). By creating a selection of interest 𝐷 only considering leٽ
creations, we obtain more frequent patterns (depicted in Figure 3.1b). During the burst, a
group of alerts was spotted in the smb2.file_name attribute. Although it is common
for that attribute to generate alerts (e.g., the creation of a ,(leٽ the fact that these alerts were
occurring quite fast after one another in 𝐷 was suspicious. The IP address responsible for
sending these messages was found by means of coloring. Creating a separate selection of in-
terest for this address with respect to 𝐷 and selecting the ip.dst attribute in the Attribute
viewer, we obtain a list of all locations where these lesٽ have been created (Figure 3.1c). Hov-
ering the mouse over address 192.168.4.34 highlights all locations of this value in the
pixel views, showing that most lesٽ in the burst period were created at this location (Fig-
ure 3.1f). The values corresponding to the alerts represented a large collection of Microsoft
group policy lesٽ being accessed in the network (Figure 3.1d). Since policy lesٽ store autho-
rization access at network level, they can only be modiٽed by network administrators. The
interesting part, however, is that none of the users in the data set are administrators.

3.8.2. Industrial control system

In contrast to the oٹce network data, S7 traٹc in the governmental control system shows
very regular patterns, suggesting that entities in the system send traٹcwithin a particular or-
dering (Figure 3.7a). Based on the shape and values that arise from these “vertical histogram”
patterns, we can see that the monitoring system 192.168.0.13 reads sensor values from
components at a xedٽ pace. OnMay 13th 9:00 the pattern becomes disturbed, raising a large
collection of alerts in attribute s7comm.rsotv. When switching to the Wireshark inter-
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face, it becomes clear that these messages correspond to commands to reprogram the PLC.
Since we did not expect this behavior, we create a new selection of interest only containing
these program commands (Figure 3.7b). When selecting the ip.src attribute in the Time
view and Attribute view, they show that four IP addresses were sending these commands at
very speciٽc moments in time over the last 72 hours. Although it is not strange for the main
controller to send these commands, the presence of the other IP addresses was unexpected.

3.9. Discussion and limitations

The SNAPS approach consists of 5 basic steps: 1) create an overview of potential threats at
payload level of a message; 2) use the notion of a lens to inspect alerts in more detail; 3) try
to gain insight in the alert by inspecting distributions, temporal patterns and co-occurrence
of other alerts in the traٹc; 4) create selections of interests to either drill down or analyze
traٹc from diٶerent angles; 5) use close cooperation between machine learning and expert
to minimize the number of false positive alerts in the visualization.

Rare values are indicated by the SNAPS classiٽer, and the additional color rules enable ex-
perts to deٽne and reuse insights in suspicious behavior. Another plus is that the reuse of
existing visualization techniques and tight integration to the trusted environmentWireshark
makes the approach relatively easy to learn. Interaction is kept simple and minimal so that
the expert can focus entirely on the traٹc data. Views for instance are automatically updated
when inspecting values through hovering while the wide range of default selections and the
use of auto-completion enables the expert to create/reٽne selectionswithminimal eٶort. The
integration between machine learning and visualization makes the system exibleپ enough
to be conٽgured for diٶerent environments.

The approach, however, also has some limitations. First, the scalability in the number of at-
tributes and number of selections is limited to the size of the screen. Themore attributes that
are of interest, the fewer selections can be shown in parallel. Although we provide the ex-
pert functionality to hide and scroll between pixel views, this only solves the problem partly.
Second, the number of histograms that have to be maintained in parallel linearly increases
with the number of selections of interest. For the cases we studied, we found that up to four
selections of interest were suٹcient for the expert to answer their questions and understand
the complexity of their selections. If the number of selections becomes large, however, up-
dating all histograms in parallel becomes too computationally andmemory intensive. Third,
one disadvantage of the current data acquisition approach is that the quality of the payload
analysis highly depends on the dissector. Since the S7 protocol is classiٽed, the Wireshark
dissector for S7 was constructed by means of reverse engineering and therefore produces
an abstract attribute space. Although we were able to discover some interesting events, the
interpretation of alerts in S7 attributes becomes diٹcult, even with Wireshark.

Finally, some remarks with respect to the classiٽer. We used a simple and straightforward
classiٽer and will consider alternatives in the future. We used an online classiٽer, which
suٶers from producing suboptimal classiٽcation results in the presence of traٹc bursts. Es-
pecially when the data window𝜔 is set too small, traٹc bursts can predominate the presence
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of regular traٹc. A partial solution would be to use an oٺine classiٽer, but this would re-
quire to maintain a separate histogram model for the classiٽer and data window, thereby
signiٽcantly increasing the complexity of the approach.

3.10. Conclusions and future work

We presented a novel approach for domain experts to discover anomalies in network traٹc
by combining Deep Packet Inspection, machine learning, and visualization into one coher-
ent system. The ability to create multiple selections in parallel enables the expert to drill
down or to focus on speciٽc entities, while still maintaining an overview of the state in the
network. The time view enables experts to detect patterns and trends over time, while the
pixel, attribute and Lens view together enables the expert to detect outliers. Furthermore,
the ability to train and reٽne classiٽers onmultiple selections of interest makes the approach
exibleپ enough to be optimized for very speciٽc environments. We have shown the eٶective-
ness of SNAPS on two real-world data sets. Since the approach only relies on the structure
of parse data in general, the proposed method is suitable for application in other domains as
well.

For future work it is interesting to study how we can analyze network traٹc at higher levels
of abstraction by grouping messages based on context and structure. This would enable the
expert to discover more complex collective anomalies such as leٽ scans or replay attacks.
Furthermore, there is still an open question about how the speed of the radars aٶects the
detection rate of the expert. Finally, evaluation is necessary to study the eٶectiveness and
scalability of the approach in larger network environments.
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4.1. Understanding the Context of Network Traffic Alerts

Figure 4.1: The discovery of Man-in-the-Middle behavior in network traffic metadata using selection-based
attribute ranking.

F or the protection of critical infrastructures against complex virus attacks, automated net-
work traٹc analysis, and Deep Packet Inspection are unavoidable. However, even with

the use of network intrusion detection systems, the number of alerts is still too large to an-
alyze manually. In addition, the discovery of domain-speciٽc multi-stage viruses (e.g., Ad-
vanced PersistentThreats) is typically not captured by a single alert. The result is that security
experts are overloaded with low-level technical alerts where they must look for the presence
of an APT. In this chapter we propose an alert-oriented visual analytics approach for the
exploration of network traٹc content in multiple contexts. In our approach CoNTA (Con-
textual analysis of Network Traٹc Alerts), experts are supported to discover threats in large
alert collections through interactive exploration using selections and attributes of interest.
Tight integration betweenmachine learning and visualization enables experts to quickly drill
down into the alert collection and report false alerts back to the intrusion detection system.
Finally, we show the eٶectiveness of the approach by applying it to real-world and artiٽcial
data sets.

4.2. Introduction

The aim of network forensics is to discover malicious activity inside logs of network traٹc.
Especially for critical infrastructures, such as power plants, the presence ofmalicious activity
can lead to the malfunction or even destruction of the underlying system. Forensics can no
longer limit their analysis to high-level message properties (e.g., length, destination) due
to the existence of Advanced Persistent Threats (APTs) [280]. These complex viruses are
designed to hide theirmalicious activity inside the content ofmessages therebymaking them
invisible to current ow-basedپ techniques [197].

Since manual inspection of network traٹc is impossible due to size and complexity, forensic
experts use network Intrusion Detection Systems (IDS) to assist them in ndingٽ areas of
interest. Although these systems automate the analysis of network traٹc, the number of
(false) alerts is often too large to analyze one by one. Given that alerts in message content
analysis can arise at any combination of hundreds of message attributes, the number of alert
types greatly varies. In this chapter we propose an exploration method that enables experts
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to gain insight in traٹc content by visually exploring and correlating network traٹc alerts
deٽned at message-level.

Similar to Livnat et al. [203], we believe that an alert as a result of a complex attack does not
stand on its own. The true severity of an alert cannot be determined by solely inspecting its
structural properties such as what, when, or where that alert has occurred in the network.
Instead, we are interested whether the occurrence of an alert was implicitly related to (a
collection of) messages or alerts that were sent in the past. For this we need to be able to
inspect message collections for correlations between message attributes (e.g., inter-attribute
analysis) and inspect trends in these attributes over periods of time, (e.g., intra-attribute
analysis). To enable the simultaneous exploration of message-level phenomena (e.g., eldٽ
misuse) and traٹc-level phenomena (e.g., bursts), our explorationmethod focuses on a tight
interaction scheme betweenwell-established visualization andmachine learning techniques.
In summary, our main contributions are:

• a visual analytics approach to network forensics, enabling experts to:

– explore and analyze network traٹc on both attribute and temporal level using
alerts as a ground truth, and

– identify and conٽrm (visual) correlations between network traٹc messages and
alerts using selection-based relevance metrics and conversation analysis.

• a data-driven coupling between machine learning and visualization for the detection
and reٽnement of network alerts.

This chapter is structured as follows. First, related work is discussed in Section 4.3. Next,
the scope and approach for traٹc analysis are discussed in Sections 4.4 and 4.5 respectively.
Section 4.6 presents an overview of the system and shows how the exploration method is
applied. Sections 4.7 and 4.8 describe two example explorations on real-world and artiٽ-
cial data sets and discuss the limitations of the approach. Conclusions and future work are
presented in Section 4.9.

4.3. Related Work

A wide range of visualization techniques have been proposed over the years to explore net-
work traٹc. We focus here on the approaches that use alerts as a central element. For a
broader overview we refer to the surveys of Shiravi et al. [274] and Attipoe et al. [17].

4.3.1. Alert Visualization

Alert visualizations are designed to gain insight into large alert collections, generated by
detection systems such as Snort [21] and Bro [244]. Some examples of well-known visual-
izations are:

• IDS rainstorm [3] visualizes the severity of Snort intrusion detection alerts by creating
a pixel visualization of the IP address space where the alerts reside.
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• Snortview [174] visualizes Snort alerts over time according to their type, source, and
destination. Glyphs and coloring are used to eٶectively represent false positives.

• Avisa [275] uses a radial display to visualize the relationship between alert types and
hosts. Alerts are visualized as B-Splines from alert type to the corresponding host
clustered using edge bundling techniques.

Such methods construct an overview of alert collections by visually encoding their severity,
source, and type in a single image. Since these methods only focus on alerts as their data
source, their knowledge about the normal traٹc is limited, making root-cause analysis on
this data very diٹcult. In addition, the loose coupling between IDS and visualization does
not enable experts to report false alerts back to the IDS. We believe that a human in the loop
approach [264] is vital for quickly gaining insight and reducing the (false) alerts.

Methods that do incorporate normal traٹc and interactive machine learning in their explo-
ration process are PixelCarpet [192] and SNAPS [45]. PixelCarpet uses a pixel visualization
where log entries are represented as a stack of pixels. The brightness of a pixel is used to
denote the frequency of log record values. Tight coupling between machine learning and
visualization is achieved by enabling the user to remove records from the data set and adapt
themodel accordingly. Although the technique assists experts in identifying areas of interest
through interactivemachine learning, theirmethod does not scale for hundreds of attributes.
The SNAPS system uses a pixel visualization to display the full structure of a network mes-
sage as a horizontal line of pixels. Alerts inside messages are highlighted on a per-attribute
basis and can be reٽned using machine learning. Unfortunately, since the approach is fo-
cused on monitoring traٹc it can only inspect small fractions of traٹc at the same time.
This makes it hard to detect attacks over larger periods in time.

4.3.2. Exploration

In order to understand the severity and cause of an alert, investigations are needed. Zhang et
al. [352] already showed that in ow-basedپ network investigations interaction and multiple
views play an important role. In our CoNTA approach, we show that this paradigm can be
extended with machine learning and relevance metrics to enable traٹc content analysis for
hundreds of attributes.

Two systems closest to our technique with respect to exploration are VisAlert [203] and
Ocelot [16]. VisAlert discovers correlation between network IDS alerts by visually map-
ping alerts according to three attributes, namely what, when, and where. They use a radial
layout and semantic zooming to ndٽ overlap between alerts at various levels of detail over
time. Ocelot improves decision support for cyber analysts in computer networks by hierar-
chically grouping host machines according to various attributes. Filtering is used to isolate
aٶected machines from healthy parts of the network.

VizAlert and Ocelot analyze alerts at the level of a host, rather than at the level of a message.
Since host-based alerts only convey information about the network-level constraints that
have been violated (e.g., policy violations, access attempts), ndingٽ the messages and values
that were responsible for these alerts is diٹcult. In addition, since both methods do not
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Figure 4.2: 1) Serialization of PCAP traffic with WireShark. 2) Machine learning produces scores per attribute
whether these are suspicious or not.

consider the normal events in their decision support analysis, context is lost making it even
more diٹcult to ndٽ the root cause of an alert. Finally, both methods do not enable experts
to inspect the sequential occurrence of one or more alerts. Kot et al. [178] already indicate
that APTs can be the result of a sequence of malicious actions. CoNTA enables experts to
visually inspect traٹc sequences by inspecting message attributes at the level of network
conversations. Interaction enables experts to store and inspect search results in diٶerent
contexts.

In summary, currentmethodologies focus on the visualization of large alert collections rather
than trying to investigate them through iterative reٽnement and correlation discovery. The
methods that try to discover correlations between alerts and traٹc events, either cannot re-
port their ndingsٽ back to the IDS or limit their analysis to only a few ow-basedپ attributes.
Furthermore, their inability to inspect sequential patterns and conversations in normal traf-
cٽ does not give experts a baseline for determining the severity of an alert.

4.4. Problem statement

The exploration and analysis of network traٹc is still a challenge. Even for relatively small
networks consisting of tens of nodes, the number of messages per day can easily run in the
order of thousands. In addition, everymessage storesmultivariate data depending on its type
and purpose. In order to protect environments from APTs, network traٹc content has to be
analyzed. APTs tend to work in three stages, namely inܦltration, expansion and exploitation.
Inٽltration is typically achieved through social engineering [286]. During expansion, the
threat will try to locate the target machine. The exploitation phase is used to sabotage the
system by relying on system vulnerabilities. Since APTs exploit domain-speciٽc properties
of the network, inٽltration is nearly impossible to prevent. We can however detect signs of
the other phases by analyzing unencrypted network traٹc between hosts for anomalies.

We focus on potential APTs against assets in industrial control systems and oٹce networks,
since the modiٽcation of assets (e.g., hardware and (lesٽ in these networks can have se-
vere consequences. We can identify two types of threats against these assets, namely system-
related versus process-related threats [129]. System-related threats create malicious traٹc at
network-level and are typically caused by traditional attacks such as buٶer overپows and
data tampering, possibly assisted by port scans or complex Man In The Middle behavior
(MITM) [216]. Process-related threats generate traٹc that is legitimate at network-level,
but malicious at the level of assets. Examples are raising the temperature of a heater to a
1000 degrees or unauthorized leٽ access. System-related threats are often used as a rstٽ step
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in the realization of a process-related threat. Process-related attacks are typically the result
of an APT.

For the detection of process-related threats, we analyzed application-level protocols SMB2
and ModBus. The Modbus protocol is designed to transfer low-level hardware commands
in industrial control systems, whereas SMB2 is used for leٽ management in oٹce networks.
System-related attacks can be detected by analyzing ow-basedپ protocols ETH, TCP, and IP.

4.4.1. Data acquisition

CoNTA applies semantic network traٹc analysis by enriching raw network packets with
protocol semantics using WireShark [63]. The result is a multivariate table where rows cor-
respond to messages and columns to attributes. Protocol attributes can represent numerical
ranges (e.g., port numbers), strings (e.g., IP addresses), or boolean values (e.g., agپ data).
Depending on the type of message, speciٽc attributes are present. Since the number of pos-
sible protocol attributes outnumbers the number of possible attributes in a message (order
of 100s vs. 10s), the resulting table is quite sparse (Figure 4.2).

For the classiٽcation of anomalous behavior in the traٹc, we aim for an anomaly detection
approach, sinceAPT activity is typically not captured by existing signature-based approaches
[83]. Similar to SNAPS, we use a probabilistic model where value distributions of protocol
eldsٽ are learned and decision thresholds are set accordingly [349]. The resulting alerts are
used as a basis for the analysis of network traٹc. Without loss of generality, we canmodel an
alert as a weighted vector of message values, where the weights describe the extent to which
the IDS considers that value malicious. More formally, let 𝐷 be our multivariate table with
𝑁 messages and𝑀 attributes.

𝐷 = {𝑚።፣ , 𝑖 = 1,… ,𝑁; 𝑗 = 1,… ,𝑀} (4.1)

where 𝑚።፣ represents the message value of message 𝑖 at attribute 𝐴፣ . Furthermore, let 𝑆
represent a table of alert data such that:

𝑆 = {𝑠።፣ ∈ [0, 1], 𝑖 = 1,… ,𝑁; 𝑗 = 1,… ,𝑀} (4.2)

where 𝑠።፣ represents an IDS alert score for value𝑚።፣ . A message𝑚። is considered malicious
if and only if:

∃፣[𝑗 = 1,… ,𝑀|𝑠።፣ > 𝜏] (4.3)

where 𝜏 is a decision threshold that for the sake of simplicity is set to 0.95. This model
enables us to deٽne classiٽer reٽnement techniques that are independent of the underlying
machine learning (see Section 4.5.6). Classiٽers that do not directly support probability-
based classiٽcation results can obtain these through posterior probability estimation [171].

Network messages are classiٽed using a probabilistic based IDS for industrial control sys-
tems as deٽned by Yüksel et al. [349]. This classiٽcation technique maintains histograms
on a per-attribute basis and uses dynamic thresholds to determine the severity of an alert.
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For the detection of contextual anomalies involving combinations of values, they derive new
attributes using domain knowledge and Pearson’s Chi-Square test [249] for statistical inde-
pendence.

4.5. CoNTA

The size and complexity of network traٹc datamakes digital network forensics a challenging
task. Especially when trying to ndٽ the root cause of high-level anomalies, the lack of traٹc
content can severely limit the investigation. To enable experts in discovering anomalies in
this data, we aim for a scalable and interactive visual analytics approach that is coherent with
the workپow of traditional digital forensics and cyber defense models [72, 358].

We tackle scalability by summarizing network traٹc in a conٽgurable table, enabling experts
to inspect trends and outliers from various perspectives by splitting the data over multiple
rows and columns. Detailed exploration is achieved by storingmessage selections as contexts
and inspecting themwith respect to these contexts. To handle the large number of attributes
in the data, attributes are represented as scentedwidgets [333] that can be ranked and lteredٽ
according to characteristics in selected message collections. Large alert collections are tack-
led by reporting false classiٽcation results back to machine learning and enabling experts to
analyze alerts from the viewpoint of both messages and attributes.

4.5.1. Exploration process

Figure 4.3 shows a schematic overview of the exploration process. Similar to Pollitt’s model
[251], our approach considers three phases, namely discovery, identiܦcation, and conܦrma-
tion. In the discovery phase, experts search the data for areas of interest using alerts as a
starting point. In order to determine when a particular subset of alerts is of interest, experts
need to ndٽ any form of similarity (e.g., originating from the same source, sharing the same
attribute) between alerts. For this experts need to be able to:

• compare traٹc between multiple entities to discover outliers;

• locate trends and sequences in attributes over time; and

• inspect messages individually to determine their severity.

In CoNTA, experts start their analysis with an overview of the traٹc over time on any de-
sired attribute of choice. Suggestions for possible interesting attributes are provided in the
attribute view using selection-based ranking techniques (Section 4.5.5).

The identiܦcation phase tries to locate potential causes of the selected data by splitting the
traٹc into one or more groups (also referred to as proٽles [237]) and inspect them in var-
ious contexts. This involves creating hypotheses and verifying them by testing the data for
structural properties, such as when andwho produced the data and what data were accessed.
The inspection of sequential properties enables experts to ndٽ malicious message orderings
in conversations. This includes the detection of conپicts of interest (e.g., approving your
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Figure 4.3: TheCoNTAworkflowmodel for network traffic exploration. Experts use alerts anda traffic overview
to findareasof interest over time inup to threeattributes. Selectedareas are refinedby (de)selectingmessages
according to suggested attributes of interest. Identification of the underlying problem is achieved by splitting
the traffic according to profiles and testing the presence ofmessage values and sequential patterns inmultiple
contexts. New contexts and attributes are obtained by saving selections of interests. Experts can use this to
keep track of their exploration process, compare selections in different contexts, or report false alerts back to
the IDS.

own leٽ requests), and violations in operational integrity (e.g., closing the gas valve before
lighting a .(reٽ

Conܦrmation is the phase where conclusions are drawn from the hypotheses. This either
results in:

• storing selections into contexts for reuse in investigations;

• tagging traٹc with new data to accelerate analysis; and/or

• reporting false alerts back to the machine learning by retraining the data on subsets
of the traٹc.

CoNTA uses four linked views to assist experts throughout the three exploration phases. In
the next sections we discuss the functionality and design decisions for each view separately.
For a demonstration of the system in practice, we refer to the supplementary video .ڂ

4.5.2. Timetable

When analyzing network traٹc, the number of messages is typically larger than the number
of available pixels on the screen. To provide an overview of the traٹc we use a table, where
attributes can be inspected over time by grouping the network traٹc over at most two at-
tributes of choice. Themainmotivation for introducing a table of small multiples over a large
single is to assist analysts in proٽling, where they can inspect traٹc with respect to certain
attribute values. This enables experts for instance to spot trends or compare traٹc over time
on a per user or daily basis. For the analysis of the traٹc as one large single, the axes of the

https://www.youtube.com/watch?v=yOXDZYKCKZ0ڂ
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Figure 4.5: The timetable visualizes continuous attributeፀ። over time by splitting the traffic overmultiple cells
using ፀ፱ and ፀ፲ .

table can be set to None. Figure 4.5 shows a schematic overview of how the timetable can
be conٽgured. Since repeatedly printing the axis labels for every table cell separately is re-
dundant and can clutter the visualization, a small legend is used instead to inform the expert
about the active axes and scaling (Figure 4.4A). For the detection of similarities between one
or more table cells, a third attribute of choice can be visualized using color.

The table axes enable experts to analyze categorical and numerical attributes by binning the
traٹc in non-overlapping intervals. The axes inside each table cell can be used to inspect
continuous attributes, such as time or message length. Since time plays a key role in network
analysis, the cell’s X-axis is always set to time.

Experts can modify the bin sizes of the table and cell axes depending on their task and avail-
able space. Small bin sizes are suitable for outlier detection at pixel-level, whereas larger bin
sizes can be used for the detection of temporal patterns over larger periods in time. For the
detection of patterns between bins, experts can sort axis values by their frequency or rarity.
If the number of bins in an attribute becomes too large, experts can enable scroll bars by
deٽning an upperbound on the number of visible bins. Predominating bins can be shown
or hidden using the control options (Figure 4.6A).

Table cells

Following from the problem statement, analysts need to be able to compare traٹc between
proٽles, inspect attributes over time, and inspect messages individually. Since every task
requires a diٶerent perspective, CoNTA supports three visualizations that can be used in
the table cells, namely heatmaps, line charts, or pixel maps. The heatmap and line chart are
designed to obtain an overview of attributes over the entire traٹc. Line charts can be used
for inspecting trends, whereas heatmaps enable experts to compare attribute behavior over
larger collections of proٽles. For the inspection of individual messages, experts can switch
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to a pixel map, where every message is represented as a rectangle (Figure 4.1D). By default,
messages in the pixel map are colored according to their protocol. Malicious messages are
indicated by a red box. Experts can enlarge the pixels through zooming to reveal a summary
description of each message. Alternatively, experts can hover over a message to inspect their
values by means of a popup (Figure 4.1E).

When selecting a numeric attribute 𝐴 for the Y-axis of the table cells, the height of every
line chart point 𝑝 is determined by taking the average of all message values with attribute
𝐴 in 𝑝. Attributes #msg and #alerts are an exception to this rule, since they represent
the number of (malicious) messages in each point in time. The color of a heatmap cell is
determined according to the chosen colormap. Line charts can also be split based on this
colormap to gain insight in the value distribution of a particular attribute over time. This
results in a stacked line chart as depicted in Figure 4.1a.

4.5.3. Context view

Experts can save selected messages of interest by assigning a name to them and deٽning
them as a new context. The context view maintains a history of all contexts the expert is
interested in. When creating a new context, experts can create a new attribute separating
the selected messages from the non-selected. This attribute is added to the data and can be
used for further analysis. This enables experts to tag the data with more domain-speciٽc
information during exploration.

For every context, the number of messages and malicious messages is displayed. To stay
aware of the size of the context, gray and red histograms are used to show the fraction of
messages and alerts that are contained in the context with respect to the entire data set. The
hierarchy in the view shows the ordering in which the selections were created. Context 𝑐 is a
child of parent context 𝑑 if and only if 𝑐 was created when the expert was exploring 𝑑. This
relationship implies that the messages contained in a child context are always a subset of the
messages in the parent.

Multi-context

One danger of drilling down in the data is that overview can be easily lost. Eventually, the
fraction of interesting data can become so small that any (visual) signiٽcant diٶerence can
be misleading due to bad scaling [145]. In CoNTA, experts are enabled to show one context
𝑐 with respect to an ancestor. The result is that the ancestor context is added transparent
in the background of 𝑐 (Figure 4.4a, c, and d). This enables experts to see any trends and
outliers that were currently not incorporated in the current context without losing overview.

We use glyphs in front of the contexts to show when multi-context is enabled. The lledٽ
inner circle represents the context of interest (in foreground), whereas the context with the
lledٽ outer circle is only visible in the background. Figure 4.4b shows how these glyphs are
applied. Experts can enable multi-context by selecting an ancestor context while pressing
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Alt. To preserve the parent-child relationship in the context view, experts cannot reٽne
their selection using the messages in the background context.

4.5.4. Conversation view

For the inspection of sequential patterns in conversations, we enable experts to inspect mes-
sage attributes using a node-link diagram. Let 𝐴 represent the attribute of interest. The
graph is constructed by creating a node for every value in 𝐴 and there is an edge (𝑣ኻ, 𝑣ኼ) if
and only if a message with 𝑣ኻ ∈ 𝐴 is followed by a message with 𝑣ኼ ∈ 𝐴 in current context
𝑐. The thickness of the edges represents the frequency at which values follow each other.
Since the resulting graph greatly depends on the chosen attribute and context, we use the
general-purpose Dot [113] algorithm for the layout.

Note that network traٹc consists of multiple conversations running in parallel. Since the
order in which conversations are interleaved in the traٹc does not have any meaning, by
default only sequential patterns within the conversations are being considered. For TCP
traٹc, a conversation (also known as a session) is deٽned as the traٹc between two IP ad-
dresses between two port numbers. In case of numerical attributes, values are binned to
reduce the number of nodes in the graph. Experts can prevent nodes with a high degree
from occluding the visualization by hiding them using a slider.

Selecting a node 𝑣 in the conversation view will highlight all messages in the traٹc with
value 𝑣. Selecting an edge (𝑣ኻ, 𝑣ኼ) selects all message pairs in the conversations where 𝑣ኻ
is indirectly followed by 𝑣ኼ. A visualization of the network topology can be obtained by
creating a graph of all IP or MAC addresses in the network. In contrast to other attributes,
both source and destination addresses should be taken into account when constructing this
graph. Experts can use this graph to lterٽ the traٹc on entire conversations and hosts.

4.5.5. Attribute view

The attribute view shows an overview of all attributes in the traٹc using scented widgets.
Every attribute is represented as a histogram showing the value distribution of that attribute.
The histogram is interactive and can be used to select and deselect messages with speciٽc
attribute values. The span slider below every histogram is used to enforce selections within
speciٽc value ranges. Timetable axes can be set to a particular attribute through a context
menu. The number of bins in a histogram depends on the attribute’s distribution. For cate-
gorical attributes, there is a bin for every value in that attribute. If the number of categorical
values exceeds 20, a miscellaneous bin is introduced to represent the remaining values in-
stead. By default, categorical bins are sorted by their frequency.

For numerical attributes, the number of bins of the histogram is computed using Scott’s rule
[271]. Experts can modify this number to gain more insight in the outliers of the attribute
or to determine the granularity in which experts can interact with the histogram.

Histograms are split into two columns. The left column represents the value distribution of
the attributes according to all the traٹc in the current context. The right column shows the
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Figure 4.6: A) Options to adjust axis ordering and scaling. B) Overview attribute widget. Projection settings
are visible in the classifier tab.

value distribution of the same attribute only considering malicious traٹc. The separation
enables experts to compare characteristics of malicious messages with the rest of the traf-
.cٽ In addition, the selection of bins in the right histogram enables experts to search for
malicious messages with certain values. More about this in Section 4.6.

Attribute ranking

Since traٹc data can consist of hundreds of attributes, inspecting every attribute manually
is impractical. Instead, experts can ndٽ interesting attributes by sorting them according to
various metrics:

• Alphabetical sorts the attributes by name.

• Most Alerts sorts attributes by counting the number of times a particular attribute was
considered malicious in the current selection.

• Relevance sorts attributes by computing the information gain [258] for each attribute
with respect to the current selectedmessages. Attributes score high if they can separate
selected messages from non-selected messages at best.

Experts can reapply the metrics on speciٽc subsets of attributes by lteringٽ them by name
using a textual interface. This is particularly useful when experts are only interested in rela-
tionships between attributes within for instance the same protocol.

4.5.6. Classifier integration

False positive rates of network IDSs are still high. To tackle this issue, we enable experts to
optimize the underlying classiٽer through reٽnement. Since machine learning techniques
in IDSs widely vary, we aim for a data-driven approach rather than a classiٽer-dependent
one. In our approach, we support four operations:

• ;lteringٽ

• projection;
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• binning; and

• self-training [360].

Experts can reٽne classiٽer scores by training the IDS on speciٽc subsets of the traٹc. With
,lteringٽ only messages with values that tٽ in the speciٽed ranges are included during clas-
siٽcation. Projection determines which set of attributes should be taken into account during
classiٽcation. Projection can be used to exclude attributes that are sensitive to false positives
(e.g., identiٽers).

Yüksel et al. already showed that false positive rates in numeric attributes can be improved
by reducing the granularity of the attribute’s value distribution through binning [349]. Es-
pecially when dealing with values whose alert scores are close to the decision boundary,
decreasing the granularity of the distribution can prevent these alerts from happening. Self-
training enables experts to report valid messages back to the classiٽer by labeling them as
safe. Instead of ignoring these messages in future classiٽcations, the messages are moved to
the training set of the IDS.This enables the IDS to prevent similar alerts in other parts of the
data.

In CoNTA, experts can instantly apply ,lteringٽ selection, and binning using the attribute
view in Section 4.5.5. When switching to the classiٽer settings, histograms are shown for
every attribute in the data set displaying the number of times attribute values were consid-
ered malicious. The range slider of a histogram represents the lteringٽ settings, whereas the
number of bins shown represents the granularity setting of the classiٽer for that attribute.
Experts can exclude alerts from the projection using the controls in Figure 4.6b. Self-training
is achieved through selection and a context menu.

4.6. Interaction

The views in CoNTA work at various levels of abstraction. The line chart, heatmap, and his-
tograms inspect patterns at traٹc level, whereas the pixel map and conversation view work
at message and conversation level respectively. For the investigation of alerts in CoNTA,
linking and interaction play a key role. To ensure that brushing and linking is consistent and
understandable over all views, we decided to use messages as a central concept. Message-
oriented interaction across views enables experts to reason about their selections as sets of
messages. Additionalmessages can be selected in diٶerent views by selecting visual elements
while holding theCtrl key (e.g., set union). Deselecting elements will remove themessages
from the current selection (e.g., set diٶerence).

To preserve consistency when creating a selection, every visual element (i.e., heatmap cell,
histogram bar, line chart series, and graph node/edge) is lledٽ with a green color propor-
tional to the fraction of the selected messages in that item (Figure 4.7). To ensure that the
intensity of the item’s background color is preserved, transparency is added to the selection
color. Similarly, hovering the mouse over an item will show the fraction of hovered items
(that were not already selected) as a translucent dark gray color on top of the selection. This
enables experts to see the impact of the new selection before applying it. To prevent elements
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Figure 4.7: Brushing and linking is applied accross all views in CoNTA.

and selections from getting visually too small to properly interact with them, the height of
every element and selection is set to a minimum of two pixels.

4.7. Use cases

We tested the eٶectiveness of our method on one artiٽcial and one real-world data set. The
rstٽ data set represents the simulation of a fully functional artiٽcial water plant consisting
of 5 hosts, 80,000 messages and 170 attributes. The data set was designed by an external
security company that is specialized in the detection of malicious activity in industrial con-
trol systems. To show the practical existence and impact of APTs, they injected an APT to
damage the facility. The second data set is obtained by recording 3 days of internal SMB2
network traٹc from a university for which there was no ground truth known beforehand.
The data set corresponds to approximately 800,000 messages, 400 attributes, and was sent by
approximately 20 hosts. For a better experience of the interaction and use cases in practice,
we refer to the supplementary video.

4.7.1. Water plant

Discovery

We initially start exploring the data set by inspecting the number of alerts in the network over
time using a line chart. We select the burst period between 16:55 and 17:10 PM in the line
chart and save the messages in a new context called “alert burst” (Figure 4.1a). According to
the topology of the network, most traٹcwas created by three nodes: the water tank (…:80);
the SCADA systemmonitoring the plant (…:88); and a router in between (…:69) (Figure
4.4d). Alerts that were caused by infrequent protocols inframe.protocols are removed
using projection (Figure 4.1b). Alerts that involve rarely active hosts are removed by select-
ing the infrequent bins in the right ip.src histogram of the attribute viewer and reporting
themback to the IDS. After selecting the new context, we sort the attribute formost common
alerts. The attribute mbtcp.reg_uint16 scores high indicating that many diٶerentmes-
sages with strange register values were seen by the IDS. Our eye was caught by the attribute
mbtcp.group0 whose right histogram shows that there are 50 messages with alerts that
have the value duplicate IP (Figure 4.1e).
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Identification

We select all alerts with the strange value by switching to the classiٽer interface using the
right histogram in the attribute view (Figure 4.1c). Sorting the selection by relevance shows
that most selected messages were received by two MAC-addresses. We group the traٹc per
MAC-address by setting the timetable’s Y-axis to eth.src. Switching to the pixel map
shows that most alerts are present in the water tank (Figure 4.1d). Coloring the messages by
IP source reveals that the router uses the same IP addresses as the other nodes, suggesting
the presence of man-in-the-middle activity. We select the conversations between the three
nodes using the edges in the conversation view, lterٽ the traٹc by Modbus, and create a
new context for them for further investigation.

Confirmation

Now that we know that this router is suspicious, the next step is to ndٽ out what the router
is aiming for. We select all malicious messages that were sent by the router using the right
histogram eth.src in the attribute viewer. Filtering this view by only Modbus eldsٽ and
sorting thewidgets by relevance reveals thatmost alerts were causedwhen reading particular
registers (Figure 4.4c). Since each register in the plant stores its own data, we group the traٹc
per register by setting the timetable X-axis to mbtcp.ref_num and table cell Y-axis to
mbtcp.reg_uint16. Figure 4.4e now shows how register values sent by the water tank
are actually perceived by the SCADA system and vice versa. Register 1 shows the status of
the tank’s valve, where the height of the register value describes the extent to which the valve
is open. Register 5 represents the overپow agپ the tank raises when the water level exceeds
a certain threshold. Note that the close valve commands that are sent to the router are not
forwarded to the tank. Further note that the tank’s overپow agپ is suppressed by the router.
The result is that the tank overپows while the SCADA system is unaware of this situation.
Finally, we select the All context in the background to see in the conversation window that
this router apparently also has conversations with other hosts in the network (Figure 4.4d).

4.7.2. University

Next, we show how sequences of messages can assist the expert in investigating when and
how lesٽ are accessed in the network. We rstٽ create a new context only containing SMB2
messageswith leٽ names by selecting all bins in the lefthistogramof the attributesmb2.fi-

lesource. Since the number of hosts in the network is signiٽcantly larger compared to
the previous data set, we start exploration by creating a heatmap showing the number of
messages per IP address (Figure 4.8a). IP addresses in the subnets *.*.4.*, *.*.5.*,
and *.*.71.* generate traٹc over day and night. Switching to the pixel map and col-
oring the pixels according to their SMB2 command, shows that these addresses are servers
only sending response messages. After sorting the Y-axis by frequency and coloring the
heatmap by number of alerts per hour shows that on December 10 06:00-07:00 AM IP ad-
dresses 192.168.4.34 and 192.168.70.38 generated more alerts with respect to the
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other time slots. Selecting both heatmap cells shows in the conversation view that both hosts
were communicating with each other.

We inspect the leٽ access behavior of the hosts by creating a node-link diagram of all the
lesٽ that were accessed in the network. Frequent lesٽ that are accessed by everyone (e.g.,
the leٽ spoolss whenever a document is printed) are hidden using the visibility slider.
Besides the strange ? in the graph, we see that a Login leٽ is indirectly followed by a Lo-
goff. Selecting the edge from Logon to Logoff shows that this behavior is generated by
192.168.4.34 and 192.168.70.38 (Figure 4.8a, red box). Selecting the suspicious
heatmap cells shows in the graph that these hosts accessed a wide variety of lesٽ within
an hour such as Autorun.inf, scripts.ini, and RemoteInstall (Figure 4.8b).
Sorting the attribute view onMost alerts shows that most of the selected messages have the
smb2.group0.flag set to 8 instead of 0 (Figure 4.8c). Deselecting the other agپ val-
ues and sorting the attributes by relevance shows that these alerts were only generated by
two MAC addresses (Figure 4.8d). We switch back to the pixel map and color the messages
by MAC address. This shows that one user runs multiple virtual machines on the same
host (Figure 4.8e). The interesting part however is that the servers we detected with subnets
*.*.4.* and *.*.5.* are all originating from the same machine. Inspecting the alerts
that were generated by these addresses using a table view, we can see that the machine was
accessing rather interesting leٽ names in the network (Figure 4.8f).

4.8. Discussion and limitations

The use cases in Section 4.7 illustrate that there is a strong interplay between high-level traf-
cٽ overviews, low-level message views, and attributes. The tight linking between the diٶer-
ent views plays a key role in understanding how high-level phenomena such as bursts re-
late to the presence of low-level alerts in messages. By tagging message collections through
(de)selection, network traٹc can be incrementally enriched with intuitive domain-speciٽc
descriptions.

The deٽnition of an outlier greatly depends on the domain knowledge and the context in
which the data is observed. The access of a leٽ X does for instance not have to be malicious
in general, but can be dangerous when performed by a certain user. The explorationmethod
should therefore be exibleپ and expressive enough to create and inspect new selections with-
out much eٶort. The timetable facilitates this by enabling experts to inspect traٹc with vi-
sualizations they are familiar with. Combined with multi-context functionality, outliers can
be inspected in various contexts with a single mouse click. Being able to select and deselect
messages based on their attributes, values, and temporal occurrence in conversations, while
directly gaining feedback on both message and traٹc level provides experts with a powerful
exploration mechanism.

Like any methodology, there are limitations. First, the number of small multiples in the
timetable does not scale well when considering attributes with many diٶerent values. Al-
though the expert is enabled to hide values and use scroll bars to limit the number of dis-
played values, this only solves the problem partly. Furthermore, the node-link diagram in
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the conversation view does not scale when visualizing large networks. Note however that the
analysis of alerts hardly involves the analysis of all the traٹc in the network at once. Since
the analysis of alerts quickly narrows the area of interest, we decided to choose visualization
methods based on their understandability and commonality, rather than their scalability.

Second, the interaction with attributes is limited to the number of visible scented widgets.
Showing too many attributes will break the interaction whereas too few attributes will in-
crease the risk of missing potential correlations. Although sorting, ,lteringٽ and scrolling
helps to ndٽ interesting attributes, creating queries involving many attributes can become a
burden and a textual interface is preferred.

Third, the proposed classiٽer reٽnement approach implicitly assumes that the underlying
classiٽcation model is suitable for semi-supervised learning. Although the interaction en-
ables experts to train the classiٽer additionally on speciٽc parts of the traٹc, there is no clear
boundary between ttingٽ and overٽtting the underlying model. The extent to which an ex-
pert can detect a false positive can greatly inپuence the classiٽer’s performance in a good or
bad way.

4.9. Conclusions and future work

Wepresented a novel approach for domain experts to explore largemessage collections using
automatic generated alerts and interaction. The ability to interactively switch from traٹc-
level overviews to message-level details enables experts to investigate the relationship be-
tween high-level traٹc phenomena and low-levelmessage eldsٽ while staying aware of other
concepts such as conversations and sequential patterns. The combination of attribute-based
scented widgets and selection-based relevance metrics enables experts to search through
large attribute collections and reٽne classiٽcation results in multiple dimensions. Since the
methodology exhibits the structure of time-dependent multivariate data, it is general and
exibleپ enough to be applied in other domains. We have shown the eٶectiveness of the ap-
proach on real-world and artiٽcial data sets.

For future work it is interesting to see how we can enrich our method by training new clas-
siٽers on speciٽc subparts of the traٹc. This would enable experts to interactively test the
IDS performance for diٶerent types of proٽles. Developing an intuitive interaction mecha-
nism, however, is nontrivial. Furthermore, an extensive evaluation is required to study the
approach’s real-time capabilities and eٶectiveness in diٶerent network environments and
domains.
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Figure 5.1: The Eventpad dataflow model for multivariate event sequence exploration: Users construct rules
to visually encode events of interest using attributes and domain knowledge. Exploration of rewritten events
is achieved by inspecting overlap in multivariate data of selections of interest. Discovery of structural overlap
between sequences is achieved by clustering sequences based on their visual encoding. Overlap between se-
quentially different sequences is discovered using multiple sequence alignment. New insights can directly be
incorporated in the analysis by storing selections of interest and defining new rules throughout exploration.

M ultivariate event sequences are ubiquitous: travel history, telecommunication conver-
sations, and server logs are some examples. Besides standard properties such as type

and timestamp, events often have other associated multivariate data. Current exploration
and analysis methods either focus on the temporal analysis of a single attribute or the struc-
tural analysis of the multivariate data only. We present an approach where users can explore
event sequences at multivariate and sequential level simultaneously by interactively deٽn-
ing a set of rewrite rules using multidimensional regular expressions. Users can store re-
sulting patterns as new types of events or attributes to interactively enrich or simplify event
sequences for further investigation. In Eventpad we provide a bottom-up glyph-oriented ap-
proach for multivariate event sequence analysis by searching, clustering, and aligning them
according to newly deٽned domain-speciٽc properties. We illustrate the eٶectiveness of our
approach with real-world data sets including telecommunication traٹc and hospital treat-
ments.

5.2. Introduction

Many domains nowadays try to gain insight in complex phenomena by logging their behav-
ior. Telecom companies for instance analyze their communication networks for the presence
of fraud, hospitals analyze patient treatments to discover bottlenecks in the process, and
companies study their workپows to improve customer satisfaction. The common ground
here is that domains are interested in the analysis of sequences (e.g., phone calls, treatments,
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workپows) in their system by recording events. Without loss of generality, we deٽne a se-
quence (a.k.a. trace, record, session, case, or conversation) as a series of events that have
the same sequence_id. Besides their type and temporal information, events often have more
associated information (e.g., status code, source, length) depending on the domain. In addi-
tion, the number of events in real-world data is typically in the order of millions and more.

Multivariate event sequence exploration is still a challenge due to size and variety. Current
methods often limit the analysis of event sequences to a single attribute without considering
other multivariate event properties in the deٽnition of patterns. We believe however that
for root-cause analysis of anomalous sequences the two should be explored simultaneously,
since values in multivariate data are often crucial to understand patterns in sequences and
vice versa. For example, although sequences of requesting, accessing, and modifying a leٽ
in general are not suspicious, they can be considered malicious when they are requested by a
particular group of users, the type of leٽ is invalid, and/or one or more authentication errors
occurred throughout the execution. For this we need to be able to incorporate multivariate
data of events and sequences in our sequential analysis. The observation for instance that
all request events in anomalous sequences share particular characteristics in one or more
attributes can help analysts to gain insight in the underlying problem.

To enable simultaneous exploration of attributes and event sequences, our explorationmethod
focuses on a user-oriented approach where the inspection of selections of interest, creation
of rules and reinterpretation of event sequences according to these rules play a central role.
To support this exibilityپ we introduce Eventpad, a notepad editor for multivariate event
data. More speciٽcally, our main contributions are:

• an exploration method that enables users to simultaneously explore and analyze mul-
tivariate event sequences on both multivariate data and sequential level, using

• a glyph-oriented visual query interface to deٽne higher-level patterns usingmultivari-
ate regular expressions,

• a uniform interaction scheme for the creation andmodiٽcation of selections of interest
across events and attributes, and

• a tightly coupled dual view for the discovery of overlap and anomalies between event
sequences through interactive multiple sequence alignment and sequence reordering.

This chapter is structured as follows. First, related work is discussed in Section 5.3. Next, we
describe our data model and approach tomultivariate event sequence exploration in Section
5.4. Sections 5.5, 5.6, and 5.7 present an overview of the system and discusses design deci-
sions with respect to visualization, data manipulation, and interaction. In Sections 5.8 and
5.9 we provide two example explorations on real-world data sets and discuss the limitations
of the approach. Finally, conclusions and future work are presented in Section 5.10.
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5.3. Related Work

Event sequence exploration is an extensively studied topic covering a wide range of visualiza-
tion techniques. The most well-known method to visualize event sequences is by represent-
ing events as glyphs based on their type and point (or interval) in time [41, 82, 85, 174]. To
enable exploration in event sequence analysis across diٶerent tasks [33], most systems enable
users to perform operations on events and sequences such as grouping, aligning, searching,
sorting, and lteringٽ [336].

Event sequence exploration methods can be grouped into two main categories: exploration
through overview or through pattern searching.

5.3.1. Event Overview

An overview is often obtained by showing events using icicle plots [24, 182, 338], state di-
agrams [337], pixel maps [46], “piano roll” glyph displays [85], or networks [245]. As op-
posed to the visualization of all event sequences, other approaches focus on the visualization
of similarities [209] or diٶerences between sequences, such as MatrixWave[356]. In order
to cope with large data volumes, many overview techniques provide lteringٽ and clustering
capabilities to reduce visual complexity.

A common approach for event visualizations is to visually encode events according to their
type. In case of a large number of event types, this encoding is limited to the most frequent
types in the data. Event types are important, but for detailed analysis oftenmultiple attributes
have to be taken into account to highlight relevant events. Hence, we aim for an alternative
approachwherewe, similar to Tominski [305] andBernard et al. [25], enable users to visually
annotate and simplify [156, 184] the data that at that moment are relevant for their analysis.
To support this we enable users to specify rules.

5.3.2. Event Searching

Various visual search interfaces have been developed for the construction of time-interval
based queries [94, 225], regular expressions [18], analysis of cohort selections [181], andweb
session logs [189]. A query interface closest to Eventpad is (s|qu)eries [351]. The (s|qu)eries
system enables users to visually construct regular expressions on multivariate data associ-
ated with events. Users can drag and drop multivariate constraints as blocks in a node-link
diagram to build their query of interest. More complex regular expressions can be obtained
by adding operators to the blocks and connecting them sequentially via edges. (s|qu)eries is
a query-driven system that is eٶective for ndingٽ known patterns of interest. For the speciٽ-
cation of queries, however, users need to be well aware of the available attribute space, since
(besides searching) there is no other support for event sequence exploration and attribute
analysis.
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5.3.3. Event Exploration

An exploration method both supporting overview and search mechanisms and close to our
technique is EventFlow [223]. EventFlow is an extensive tool for the exploration and anal-
ysis of large event collections. Custom interfaces are provided to intuitively search, ,lterٽ
categorize, align, and simplify [224] events based on type, timestamps, and time intervals.
Although the system provides extensive support for event analysis by their type and tempo-
ral information, Monroe et al. indicate that the system provides little support for the analysis
of additionalmultivariate data [223]. In addition, they also indicate that comprehensive sup-
port across event sequences and attributes is key for temporal event sequence analysis tools
to be used in practice. Other techniques try to overcome the problem of multivariate anal-
ysis by considering the attributes together as one event type [122]. This approach however
does not scale well for high-dimensional data.

Another system for the simultaneous analysis of temporal patterns and multivariate data
is ClickStreamVis by Liu et al. [202]. ClickStreamVis enables the analysis of multivariate
data in event sequences by extracting frequent sequential patterns from the data using pat-
tern mining techniques. As opposed to existing techniques, ClickStreamVis tries to obtain
higher granularity levels by automatically extracting (sub)sequences of interest using mo-
tif analysis and various clustering techniques. Unique event sequences are visualized in an
icicle plot along with their frequencies. Analysts can align sequences in the visualization
according to events in the mined patterns to discover areas of interest. Liu et al. already
indicated that their sequence view does not scale well due to the wide variety in large event
sequence logs and lack of semantic zooming in their tooling. Furthermore, the computation
of mining and pruningmaximal sequence patterns can take minutes for relatively small data
sets. In Eventpad we tackle wide diversity between event sequences by enabling users to -lٽ
ter or simplify sequences using regular expressions [172]. In addition, users are enabled to
store intermediate selections of interest for further investigation. Since the evaluation of a
regular expression is linear in the size of the input and its corresponding deterministic niteٽ
automaton [4], the technique easily scales to the analysis of hundreds of thousands of events.

In summary, current methods either focus on the sequential analysis of univariate data or
the structural analysis of multivariate data. Systems that do take multivariate properties into
account during analysis either focus on obtaining an overview or providing search capabil-
ities to explore the data. Currently, no system provides users the ability to both explore and
search event sequences by combining temporal patterns and multivariate data in one inter-
face and query language. In addition, no system enables users to interactively explore overlap
between sequences of interest alongside attributes using multiple sequence alignment and
rule-based event rewriting.

5.4. Exploration

The size of and variety in large event sequence logs makes it diٹcult to gain insight in the
behavior of the underlying system. Users are not only interested in the existence of particular
sequences, but also want to understandwhatmight have caused them. In order to do so, they
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need to be able to discoverwhichmultivariate event properties in these sequences distinguish
them from the rest. Since higher level concepts such as a “bad login attempt” or “successful
phone call” are typically not captured in low-level events, users need to be enabled to enrich
their data with these concepts to ndٽ the sequences they are interested in. In summary, we
need a scalable interactive method to

• inspect event sequence orderings of interest alongside their associated multivariate
data,

• assist users in ndingٽ and deٽning sequences of interest, while

• staying aware of high-level phenomena in sequence collections through overview.

In order to keep this method simple and scalable for the analysis of large event logs, we
choose for a bottom-up exploration approach where event sequences are represented by se-
ries of glyphs and high-level overviews are obtained by ndingٽ and summarizing sequences
based on user-deٽned patterns of interest. To tackle the variety in event logs, we consider
the problem at three levels, namely the reduction of complexity:

• within event sequences,

• between event sequences, and

• inside multivariate data (of events of interest).

For this we use three concepts, namely

• rules,

• pattern aggregation, and

• selections.

Rules enable users to simplify and visually encode event sequences using glyphs and regular
expressions. Users can apply pattern aggregations to discover overlap between sequentially
similar but structurally diٶerent sequences by summarizing them using clustering and align-
ment techniques. The creation of event selections of interest enables users to focus on parts
of the event sequences that are relevant for their investigation.
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Figure 5.1 shows a schematic overview of how these concepts are used in Eventpad. In terms
of the strategy guidelines of Du et al. [82], Eventpad enables users to extract records and
categories (S1,S2), identify features of sequences (S3) or alignments (S4) with the ability to
group events by custom deٽned categories (S9) and coalescing event sequences into new
events (S10, S12). Newly deٽned search patterns can be stored and applied to larger data
sets (S14). For a demonstration of the method in practice, we refer to the supplementary
videoڂ.

5.5. Rules

Text editors typically enable text ,lteringٽ highlighting, and compression by providing search
and replace functionality through regular expressions. Regular expressions are the de facto
standard in industry systems such as Elasticsearch [121], Logstash [311], or grep [168] for
eٹciently ndingٽ (and replacing) character sequences in text according to search patterns.
Traditional regular expression languages only operate on univariate data such as plain text.
We describe how we enable multivariate event sequence analysis by extending regular ex-
pressions with predicate logic to support multiple attributes.

5.5.1. Formal theory

A traditional regular expression consists of symbols (i.e., text) and operators. In order to ex-
tend regular expressions to support multivariate data, we deٽne two types of events, namely
micro andmacro events.

A microEvent 𝑒 has (attribute,value) pairs (𝑎, 𝑣) ∈ 𝐴 × 𝑉 where 𝑣 can represent numerical
ranges, strings, or boolean values. In addition, a microEvent has a sequence_id. We
model a macroEvent 𝑒ᖣ = ⟨𝐿, 𝐸𝑆⟩ where 𝐿 is a list of labels and 𝐸𝑆 a set of microEvents.
Initially we assume that every microEvent 𝑒 is contained in a (default) macroEvent 𝑒ᖣ with
𝐿 = [“Gray”] and𝐸𝑆 = {𝑒}. We cannowmodel an event sequence as a series ofmacroEvents
with the same sequence_id.

Our extended regular expression language consists of macroEventPredicates and operators.
A macroEventPredicate is a boolean expression 𝐵 over label(s) in ℒ and/or attribute(s) and
value(s) in 𝐴 and 𝑉. A macroEvent𝑚 satisٽes 𝐵 if and only if allmicroEvents in𝑚 satisfy
𝐵. Alternatively, one can require at least one microEvent to satisfy 𝐵. We refer to this as
maximal versusminimalmatching respectively.

A rule is of the form 𝛼 → 𝑙 where 𝛼 is a regular expression and 𝑙 is a label. Operationally, a
rule is redٽ if an event sequence 𝑠 in the data set canmatch𝛼. This results in the replacement
of 𝑠 by a new macroEvent 𝑐 = ⟨𝐿ᖣ, 𝐸𝑆ᖣ⟩ where 𝐿ᖣ = [𝑙] and 𝐸𝑆ᖣ is the union all microEvents
in 𝑠. In case of one-to-one mappings, labels in 𝑠 are prepended to 𝐿ᖣ. This enables users to
reason about multiple labels when specifying queries (more about this in Section 5.5.3.)

https://www.youtube.com/watch?v=2DWVW-vLN8Qڂ

https://www.youtube.com/watch?v=2DWVW-vLN8Q
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Figure 5.3: Query interface for construction of rules. Boolean constraints can be added to a glyph using a
textual interfacewith autocompletion and query validity checks. The pipet enables users to copy/paste glyphs
that are present in the sequence view in the query interface. Glyphs with an exclamation mark have one or
more attribute constraints.

In contrast to traditional regex, we have to ensure that events before and after the application
of a rule remain the same. To keep this mapping simple and intuitive, we limit a rule to the
creation of one macroEvent. For more details, we refer to the supplementary material.

5.5.2. Rule visualization

Initially, every macroEvent is represented by a gray glyph.

The sequence view (Figure 5.4A) visualizes event sequences as a series of glyphs, starting
every sequence on a new row. Event sequences that do not tٽ on a single line are wrapped
over multiple rows. Scroll bars are used to inspect the entire data set. The size of the glyphs
can be set proportional to a numeric attribute of choice. Since Eventpad focuses on the
reduction and analysis of event patterns, time-intervals between events are disregarded in
the visualization.

Users can replace one or more macroEvents in sequences by a new one using a rule editor
(Figure 5.3). Traditional regex operators such as sequential composition, choice, and itera-
tion (0 or more times) can be used to construct patterns. Figure 5.2 shows how these opera-
tors are visually encoded in the interface. Similar to Word’s equation editor [217], operators
can be combined to construct more complex patterns.
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Figure 5.5: Editor interface for the construction of custom glyphs.

Users can specify a macroEventPredicate by selecting a glyph of choice. The “Wildcard”
glyph corresponds to any label. Double-clicking a glyph in the query interface results in a
textual interface (Figure 5.3). This enables users to specify a predicate over attributes and
values in the data. For the right-hand side of a rule, users can design their own labels by
choosing a particular shape, color and/or label (Figure 5.5). Earlier deٽned glyphs can be
reused for the creation of new rules. In general, rules are used for three purposes (also de-
picted in Figure 5.3):

,lteringٽ

highlighting, and

compression.

Filter rules are constructed by rewriting patterns to the empty macroEvent and are typically
used for data reduction. Highlight rules enable users to visually emphasize events of inter-
est for their investigation, whereas compression rules group collections of events to reduce
variety or repetition.

5.5.3. Rule interaction

In Eventpad, multiple rules can be applied one after each other. Rules are shown in a list
(Figure 5.4F) and applied from top to bottom. The ordering of the rules can be rearranged
using drag & drop operations and rules can be toggled on and oٶ to study their eٶect. Regex
rules can match patterns of varying length, e.g., application of the rule a.*b→ R to a string
abcb can lead to eitherRcb or justR. Analysts can determine for every rule whether longest
or shortest matching should be applied using the rule view.
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NL NL

Call

None

Call

Figure 5.6: Search interfacewhere users are only interested in sequenceswhere call events also originate from
the Netherlands. In addition, these call events should be followed by ack events only (i.e., without overlap).

A direct consequence of our extension to multivariate data is the possibility of having a
macroEvent adhere to multiple rules at the same time (also referred to as multi-matching).
This is for instance the case when two rules specify constraints over two diٶerent attributes.
In order to make users aware of this, in Eventpad’s sequence view we visualize this overlap
by stacking the corresponding glyphs of a macroEvent on top of each other. An oٶset is used
to ensure that previous matches are still visible to the user. Users can disable multi-matching
to prevent glyphs from being stacked. In this situation, only the glyph of the last obtained
macroEvent label is shown to the user.

To study the impact of a rule over the data set, an icicle plot is introduced visualizing the
fraction of glyphs that are rewritten by the current rule set (Figure 5.4E). The icicle plot is
constructed in the same order as the rules are applied. The order in which the rules occur in
the rule view determines the ordering in which the glyphs are stacked.

Besides rules, users can select patterns via a search interface. Users can stack glyphs in the
search interface to enforce a macroEvent to adhere to more than one rule at the same time.
Inversely, the exact operator is used to ensure that macroEvents of interest only adhere to
the speciٽed visual representation. Figure 5.6 shows a search dialog where both operators
are applied.

5.6. Pattern Aggregation

Although rules can signiٽcantly reduce the length and complexity of sequences, slight vari-
ations between sequences in real-world data are inevitable. In the next sections we describe
how we use clustering, alignment, sorting, and partitioning operations to discover patterns
between sequences through overview.

5.6.1. Structural sequence overlap

Depending on the type of rule it is possible for a glyph to represent more than one event.
Users are informed about this by placing a red popup in the upper right corner of the glyph
showing the number of events it contains. Since this popup does not alter the type of glyph,
we decided to exclude this information during sorting and clustering.
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Since all sequences typically do not tٽ on the screen, users can gain better insight in their
event log by clustering sequences based on their glyph representation. This results in a
stacked view only showing the unique sequences in the data set based on the currently de-
nedٽ set of rules. The frequency of a sequence is shown textually at the end of every sequence.
Stacked sequences can be sorted by frequency to discover generic patterns or outliers. Users
can also sort sequences according to various metrics:

• Default presents the sequences in the order of the input.

• Alphabetical sorts sequences by representing every sequence as a string. The string is
obtained by concatenating the labels of glyphs together separated by delimiters.

• Clustered sorts sequences by applying single linkage agglomerative hierarchical clus-
tering [93] on the unique event sequences based on Hamming distance.

• Selected sorts sequences by their number of currently selected events.

With hierarchical clustering sequences of similar length are positioned close to each other,
whereas alphabetical sorts sequences based on their starting sequence. The Hamming dis-
tance 𝑑(𝑠ኻ, 𝑠ኼ) between two sequences 𝑠ኻ, 𝑠ኼ is deٽned by their number of dissimilar glyphs:

∑
ኻጾ።ጾ፦።፧(#፬ኻ ,#፬ኼ)

({0, 𝑠ኻ[𝑖] = 𝑠ኼ[𝑖]
1, otherwise

) + |#𝑠ኻ − #𝑠ኼ|,

where 𝑠ኻ[𝑖] represents the 𝑖-th macroEvent of 𝑠ኻ and #𝑠ኻ its corresponding length. Two
macroEvents are assumed to be equal if they are rewritten by the same set of rules.

To gain better insight in characteristics of particular sequences, users are enabled to partition
sequences according to a sequence attribute of choice. This enables users for instance to
inspect event sequences based on their length, duration, or starting time. By default all event
sequences are contained in a group called “All” (Figure 5.5A).

5.6.2. Sequential sequence overlap

The wide variety in event sequences sometimes makes it diٹcult to detect potential overlap
between them. We believe however that discovering overlap is key to understanding how de-
viations between sequences may have developed. The alignment view (Figure 5.4B) enables
analysts to generate an overview visualization of event sequences of interest by aggregating
them in an icicle plot.

Current alignment methods [329] often focus on the alignment of sequences by the 𝑛-th
occurrence of an event. In Eventpad, we assist analysts in ndingٽ multiple areas of interest
throughMultiple Sequence Alignment (i.e., MSA). Figure 5.7 shows the eٶect ofMSA on the
traditional icicle plot. MSA is a popular technique in the area of bioinformatics to discover
patterns between (fragments of) DNA sequences. As DNA sequences typically show overlap
in small fragments of the sequences, they often useMSA algorithms with local optimization.
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Figure 5.7: Effect of alignment to event sequences: a) No alignment. b) MSA layout with gap cost = 1 c) MSA
layout with gap cost = 2 d) Effect of sorting on different part of the alignment.

Since we are interested in overlap and diٶerences between entire sequences, we chose for an
MSA algorithm focusing on global alignment.

Bose et al. showed the value of applying sequence alignment to gain better insight in event
logs [31]. They also indicated the need for interaction to explore patterns in greater detail.
In Eventpad analysts are enabled to apply the progressive global MSA algorithm by Bose et
al. on event selections of interest to automatically ndٽ areas of overlap. Analysts can modify
parameter settings such as gap cost to determine the amount of white spacing the MSA is
allowed to introduce. Selecting a block in the alignment view results in the selection of its
corresponding events in the sequence view. This enables users to select similar events across
multiple sequences with a single click of a button.

5.7. Selections

Pattern aggregation enables users to perform high-level comparisons, but does not enable
the inspection and comparison of multivariate data outside the scope of rules. In addition,
analysts need to be enabled to focus on parts of the event sequences that are relevant for their
investigations. For this we enable users to create selections of interest.
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Figure 5.8: a) Application of INVITE (blue), ACK (bordeaux), and error messages (orange/blue). b) Messages in
red represent external traffic.

5.7.1. Context

The context view (Figure 5.4D) enables users to save selected events of interest into a new
context by assigning a name to them. The creation of a new context results in a new attribute
separating the selected events from the non-selected. This attribute is added to the data
and can be used for further analysis and drill down, enabling analysts to tag the data with
more domain-speciٽc information throughout exploration. To stay aware of the impact of
a particular selection, the status bar is used to display the number of events and sequences
that are currently selected in the active context.

Similar to Cappers et al. [46] contexts are saved in a tree structure where the hierarchy shows
the ordering in which the contexts are created. Context 𝑐 is a child of parent context 𝑑 if and
only if 𝑐 was created when the analyst was exploring 𝑑. Contexts are used to focus on smaller
subsets of the data. Right-clicking a context 𝑎 while exploring 𝑏 results in the selection of all
events that 𝑎 and 𝑏 have in common.

5.7.2. Attributes

To enable the inspection of multivariate data in event selections of interest, an attribute view
(Figure 5.4C) is introduced showing an overview of event attributes using scented widgets
[333]. The histogram bins are interactive and can be used to select and deselect events with
speciٽc attribute values within the current context. Scented widgets for sequence attributes
are introduced in a second tab. Selections can be enforced within speciٽc value ranges of a
widget by adjusting its scented span slider. For categorical attributes an exclamation mark
is shown in front if the number of values is too large to visualize. To inspect selected values
that are not visualized, histogram bins can be sorted by frequency, rarity, or whether they
occur in the current selection. Since the number of attributes is typically larger than the
number of widgets that tٽ on screen, we enable users to lterٽ attributes by name using a
textual interface.

5.7.3. Interaction

Event-oriented interaction is used to keep brushing and linking consistent and understand-
able over all the views. Users can modify selections of interest by selecting and deselecting
visual elements across diٶerent views while holding the CTRL key. In case of the attribute
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view, blue bars are used to show the fraction of selected events in every bin. Glyphs whose
event collections are partially selected aremarkedwith a blue dashed border, solid otherwise.
Double-clicking a glyph in the sequence view results in the selection of its corresponding
sequence. Right clicking on a selection enables users to store selections for further inves-
tigation, invert selections, or inspect the multivariate properties of the selected events in a
tabular view.

5.8. Use cases

Wedemonstrate the explorationmethod on two real-worldmultivariate event sequence data
sets. We show how tight coupling between multivariate and sequential analysis is achieved
by starting exploration in the rstٽ example with the analysis of known sequential patterns
in order to ndٽ anomalies and patterns in the multivariate data. In the exploration of the
second data set we start with the analysis of multivariate data in order to discover patterns
of interest in the sequences.

5.8.1. VoIP traffic

Theproposed explorationmethod was designed in collaboration with a Dutch telecom com-
pany specialized in the provision of communication services over Internet using Voice over
IP (VoIP).

Problem statement

For the establishment of a VoIP conversation handshaking signals such as invite (start call),
acknowledge (accept call), cancel (interrupt call), and bye (end call) are transferred using
a protocol called SIP [266]. Besides the type of signaling, these messages have additional
information, such as status codes, source and destination phone numbers, (geo) domain in-
formation, user-agent etc. A conversation is uniquely deٽned by a Call-Id. The presence
of illegal SIP sequences and/or invalid SIP messages in the traٹc can cause SIP servers to
go to an invalid state where conversations are no longer properly billed or secured, or could
even lead to the disruption of the server [116].

A common attackmodel for hackers to abuse this state is tomakemoney using Toll fraud [1].
In this model, hackers steal user credentials to hijack a company’s VoIP phone, make many
(long) phone calls to premium numbers they own in order to receive thousands of euros
for the dialed numbers at the expense of the company. The detection of these Advanced
Persistent Threats (APTs) [280] in general is diٹcult since APT and “normal” traٹc look
very similar.

The exibilityپ of the SIP protocol makes the distinction between valid and invalid phone
conversations ill-deٽned. Depending on the vulnerabilities in new VoIP software updates,
these deٽnitionsmight even change over time. Themain goal of the exploration is to ndٽ out
whether their servers and customers properly send SIPmessages conform the RFC standard
[267]. Gaining insight in unexpected signaling can help analysts to understandwhether they
were caused due to bad server conٽgurations or the presence of malicious users.
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Exploration

Together with four analysts we organized an interactive session where we used Eventpad to
study their SIP traٹc. In their daily routine the analysts use applications such as VoiPMon-
itor [282] and the protocol-analyzer Wireshark [63] to gain better insight in their phone
traٹc. They often use search tools such as grep and Elasticsearch in their investigations
to ndٽ explanations for errors in their server logs. We initially analyzed 800,000 SIP mes-
sages consisting of approximately 181,000 conversations and 60 attributes. The traٹc was
obtained by recording 20 minutes of SIP signaling from one of the data centers with a load
of approximately 3000 concurrent calls per second.

We started explorationwith a black listing approachwhere analysts created rules to search for
known undesired SIP conversations. For this they created a rule where glyphs whose event’s
status code represent SIP client or server failure are replaced with an orange “!” glyph. Blue
“!!” glyphs are introduced for error codes that were sent from their own servers. The rule
overview showed that only 2% of the events contained internal errors (Figure 5.8a). They
investigated this by sorting the sequences alphabetically and creating three rules to visually
distinguish between INVITE, ACK, and BYEmessages.

The rule overview showed that only 35% of the data was covered by the new rules (Figure
5.8a). Inspecting thesip.Methodwidget showed that almost 60% of their traٹc consisted
of other SIP traٹc involving Optionmessages to ping server information and REGISTER
messages. In addition, they noticed a small percentage of MESSAGE events that are supposed
to be deprecated in their platform because of known vulnerabilities [116].

To study the variety in the traٹc, analysts decided to cluster the sequences and sort them by
frequency. They were shocked to see that only 20% traٹc was captured in the top 10 most
frequent patterns (Figure 5.9B) as this indicates high variability and many deviations from
expected standard behavior. Next, analysts lteredٽ out incomplete conversations by search-
ing for sequences starting with an invite request using the search interface. In addition, they
decided to focus on their own traٹc by excluding traٹc from third party VoIP providers.
This resulted in a new context and attribute called “Internal traٹc”.

After selecting the frequent patterns and aligning themusingMSA, analysts saw that, despite
the variety, overlap between sequences was high (Figure 5.4B). Analysts now noticed the
presence of a proxy server in the middle of phone conversations (Figure 5.4B: two INV and
two ACKmessages nested). This made them realize that some phone calls were migrated to
other data centers for load balancing. In cases where this proxy was not present, erroneous
messageswere generated twice in one sequence (highlighted in Figure 5.4B). In this sequence
INV and ACK are not nested. Analysts selected the aligned “!!” events in the alignment
view and inspected their multivariate data using a tabular view. Inspecting the sip.From
header of the events revealed thatmost erroneousmessages had an anonymous source phone
number and an invalid domain (Figure 5.4C).

Based on previous observations, we organized a second session where we extended the anal-
ysis over a larger period in time. We excluded ping traٹc, incomplete conversations due to
fragmentation, and phone calls that were established outside their platform. In this session
we incorporated two hours of traٹc by simultaneously recording traٹc from two data cen-
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ters. Since Wireshark does not support any lteringٽ mechanism at sequential level, we use
the Eventpad engine for preprocessing the data set only considering conversations:

• that start with an INVITEmessage,

• where an invite should eventually be followed by a BYE or CANCEL, and

• only contains messages whose From.host and To.host are inside the company’s
domain.

In order to avoid the presence of duplicate messages due to call redirection of proxies, phone
calls are identiٽed by their tripleip.src,ip.dst, andCall-Id. The application of these
lterٽ rules resulted in the reduction from 40,000,000 events and approximately 4,000,000
conversations to the analysis of 1,300,000 events and approximately 80,000 conversations
respectively.

After applying the rules, analysts created a new alignment of the most frequent patterns to
see that in this selection the variety in the traٹc was signiٽcantly reduced (Figure 5.9A).The
sequential occurrence of INVITEmessages in the Dutch traٹc showed the presence of a bad
proxy conٽguration where the target computer and proxy were the same (Figure 5.9A, *).

Partitioning the traٹc by geoip.src showed that these bad proxies were located in Dutch
traٹc only (Figure 5.10). Furthermore, analysts noticed that most international phone calls
to the Netherlands failed at their rstٽ connection attempt. Since it is possible for a phone
conversation to have multiple connection attempts, analysts decided to extract these pat-
terns by constructing a rule as speciٽed in Figure 5.9B. Bad proxy settings were ignored using
shortest matching and by enforcing that invites are not inside the attempts. After extracting
the attempts and sorting them alphabetically, analysts noticed that most conversations in
their network required at most two connection attempts in order to succeed (Figure 5.9C).
Some phone conversations however required over 40 attempts (Figure 5.9D). Although the
start time and duration of the conversation did not show anything suspicious, inspection of
the event attributes shows the presence of OPTIONS messages inside a regular phone call.
Although such a sequence is valid with respect to the RFC, in practice this is highly uncom-
mon. After selecting all conversations with OPTIONS messages, sorting the attributes by
relevance showed that all conversations originated from the same client (Figure 5.9E).

After the sessions, one of the analysts said “For us, the system is a business intelligence tool
that can really help us in understanding what is actually happening in our platform.” Ad-
ditional features such as integration with Wireshark and shortcut functionality to instantly
remove selected patterns of interest was requested to speed up their analysis process.

5.8.2. Hospital records

To illustrate the eٶectiveness of the method in other domains, we also analyzed a real-world
hospital data set provided by the BPIC11 contest [319] consisting of approximately 1000
sequences, 134,000 events, and approximately 130 attributes. Apart from anonymization,
the hospital log stores for every patient of a Gynaecology department when certain activities
took place along with additional attributes such as which group performed the activity, the
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Figure 5.10: Partitioning by geoip.src reveals that external calls contain errors and the presence of bad
proxy configurations (*) in Dutch traffic.

age of the patient, the activity’s level of emergency etc. The hospital log contains patient
treatments where urgent activities are performed. In this use case we want to know when
the hospital decides to make certain activities urgent. We try to ndٽ an explanation for these
activities by testing whether urgent patient treatments share particular events.

We start exploration by rstٽ creating a rule where all urgent events are marked in red (in-
dicated in Figure 5.11B). We obtain all urgent sequences by searching for sequences with
at least one red glyph and store them in a new context “urgent” (corresponding to 256 se-
quences). After selecting the new context, we inspect the org_group widget to see that
all urgent events occur in the General Lab. To discover whether urgent events hap-
pened before or after certain treatments in other departments, we select events based on their
org_group using the attribute view and inspect the number of cases that are involved via
the status bar. This showed that in approximately half of the cases, the Radiotherapy
group was involved in the treatment process.

Since radiotherapy is exceptional and only used for the treatment of cancer, we want to know
whether the urgent activities happened before, after, or during this treatment. To explain
the location of these events, we rstٽ have to understand the general workپow inside the
department. We extract the radiotherapy events from the event log using the search inter-
face and store results in a new selection “radio”. We investigate the diٶerent activities using
the event:name attribute widget. The number of diٶerent activities in the department
is too large to visualize individually, but we can see that the most frequent activities can
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Figure 5.11: A) Investigation of anomalous alignments using selections and attribute inspection. B) Rewrite
rules to study workflow patterns in the Radiotherapy department: 1. Group successive consultancy (blue)
events in one glyph 2. Filter by radiotherapy (yellow) 3. Disable radiotherapy encoding. C) MSA results with
gap cost 2 after incrementally adding knowledge into the data.

be grouped in four categories: consultancy (e.g., primary, secondary, and consultancy by
phone), teletherapy (external radiation treatment), brachytherapy (internal radiation treat-
ment), and payment administration. We deٽne these categories by deٽning four rules where
we search for events with keywords “consult”, “teletherapy”, “brachytherapy”, and “rate” in
their activity name respectively. Since consultancy may require multiple sessions in a row
that does not add value to the investigation, we deٽne an additional rule where subsequent
consultancy events are represented by a single blue glyph. Figure 5.11B shows the events of
interest after applying the rules. Figure 5.11C shows the result of applying MSA to the glyph
sequences before and after deٽning every rule one by one.

Applying MSA with gap cost of 2 shows that urgent radiotherapy treatments in general rstٽ
start with consultancy (blue), basic treatment (gray), teletherapy (green) after which there
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Figure 5.12: General workflow radiotherapy department without (left) and with (right) urgent events in red.
Urgent events between teletherapy (green) and brachytherapy (purple) mainly test for kalium, leukocytes and
trombocytes in the patient’s blood. Urgent events before and after therapy focus on calcium, glucose, natrium
etc. Orange and blue events represent payment and consultancy respectively.

is a concluding consultancy. Figure 5.12 shows the radiotherapy alignment along with the
emergency activities indicated in red. Here we can see that in approximately half of the
cases emergency events occurred before radiotherapy was started. We can also see that ur-
gent events often occur between teletherapy (green) and brachytherapy (purple) sessions
(Figure 5.12, black box). Inspection of these events shows that they analyze trombocytes
and leukocytes in the patient’s blood to study the eٶect of the radiation. In non-urgent cases
we discovered that this type of blood research is only performed during annual consultan-
cies. This shows that the hospital assigns a higher priority to blood results of patients during
radiation treatment. Patients who still had urgent activities after brachytherapy were all di-
agnosed with either gynecological tumors or cervix uteri cancer (both highly uncommon in
the data set).

Besides the general workپow, we discovered some anomalies that were unexpected:

• Some treatments involving brachytherapy did not receive consultancy in the Radio-
therapy department (Figure 5.11A-3). Inspecting the sequences of interest outside
Radiotherapy reveals that consultancy happened in a diٶerent department (Figure
5.11B).

• Some treatments show an increased number of undeٽned and teletherapy sessions
after each other (Figure 5.11A-2). Closer inspection of the sequences in a tabular view
reveals that treatments involve a rare activity named “simulator” (Figure 5.11A-1).

• In most cases brachytherapy is only performed after a teletherapy session (Figure
5.11A-3). However in 3% percent of the sequences this did not hold (Figure 5.11,
red circles). In these situations, all patients were diagnosed with Malignancy en-
dometrium whose treatment apparently started all on the same day.
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The use cases in Section 5.8 show how combined exploration of attributes and sequential
analysis is achieved using rule-based event rewriting, sequence aggregation, and selections
of interest as central elements. Each of these concepts has its own advantages and limita-
tions for the analysis of events, we show that when combined they amplify each other. Tight
linking between the concepts provides analysts a minimalistic yet expressive visual query
mechanism to interactively select sequences of interest based on their sequential attributes,
event patterns, and multivariate data associated with these events.

Thedeٽnition of an anomalous sequence in general is ill-deٽned and requires domain knowl-
edge and multiple iterations to construct properly. The ability to visually encode parts of the
data based on rules enables analysts to incrementally label their data and deٽne their notion
of what a good or bad sequence should look like. By sorting and clustering events based
on the speciٽed visual encodings analysts are able to study the coverage of their rules and
discover new patterns of interest.

Furthermore, the ability to evaluate rules in an oٺine setting also makes the tool suitable for
data cleansing applications [207], where analysts can use the rules to only obtain the parts
of the data (sequences) that are relevant for their investigation.

As with every technique, there are limitations. Although the application and construction
of a rule in general is easy and intuitive to understand, the resulting rewriting can become
complex when evaluating a large number of rules. During the interactive sessions with an-
alysts we noticed that they needed about 10 active rules in order to answer their questions.
The application of too many rules in parallel however can clutter the sequence and align-
ment view. Analysts can replace multiple rules by a new one by combining constraints over
multiple attributes in one rule, but this only solves the problem partly. Although regular
expressions in general are powerful to specify patterns, they have diٹculties in capturing
non-deterministic behavior. Especially for the analysis of systems involving parallel com-
munication, the speciٽcation of patterns using regex can become cumbersome.

The eٶectiveness of clustering and alignment methods depends on the amount of informa-
tion that is incorporated in the deٽnition of the rules. In case of the hospital data we saw for
instance that naively applying MSA without any proper rules resulted in no insights (under-
(ttingٽ whereas creating rules for all possible (combinations of) values is tedious and results
into noisy alignments (overٽtting). Although it is possible for analysts to simplify sequences
using rules and lteringٽ techniques, domain knowledge about the underlying data is essen-
tial to obtain desired results. Especially when analyzing long sequences, coping with the
variety in sequences and multivariate data can become diٹcult without a priori knowledge
and expectations.

The approach suٶers from a “cold-start problem” in the sense that users must already be
aware of the information to be queried [212]. Although selections and scented widgets can
help analysts in ndingٽ characteristics in parts of the data that are not captured by rules, this
can be time-consuming without (automated) guidelines.
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The performance of progressive MSA and single linkage hierarchical clustering in general
are 𝒪(𝑛ኼ𝑚ኼ) and 𝒪(𝑛ኼ𝑚) respectively, where 𝑛 represents the number of sequences and
𝑚 the length of the sequences of interest. In practice we noticed that the application of the
techniques to only unique patterns in the data set and selections of interestmakes the analysis
interactive for hundreds of sequences. However, interactivity can be aٶected when naively
applying these techniques over larger collections of long and unique sequences.

With respect to the visualization, the presented exploration approach focuses on the sequen-
tial occurrence of events rather than the time between them. In our problem statement ab-
solute time does not play a major role. For applications where the time between events is
relevant for the analysis, the interface has to be adapted. Finally, if the number of attributes
in events and sequences is large, interaction with attributes is limited to the number of vis-
ible scented widgets. Although sorting, ,lteringٽ and scrolling helps at ndingٽ attributes of
interest, specifying queries involving many attributes becomes time-consuming.

5.10. Conclusion and Future Work

We presented a novel approach for analysts to explore multivariate event sequence data by
combining attribute and sequential analysis into one uniٽed system. The ability to interac-
tively encode event logs by coalescing event sequences according to rules enables analysts
to incorporate their knowledge to the data and test whether this matches their expectations.
The combination of attribute-based scented widgets and pattern aggregations enables ana-
lysts to discover new attributes of interest and reٽne rules based on their new ndingsٽ while
staying aware of high-level patterns across diٶerent levels of abstractions. We have shown
the eٶectiveness of the approach on real-world data sets through interactive sessions with
external companies and elaborate examples. Since the methodology makes no underlying
assumptions on sequential data, it is general and exibleپ enough to be used in other domains.

For future work it is interesting to see how we can extend the visualization paradigm to
support more complex regex operators such as capture groups and back referencing [111].
Also, an extension of the glyph design interface to enable further parametrization of glyphs
can help to study correlations between two or more attributes.

The system currently focuses on deٽning new attributes of interest at the level of an event.
Applications where multivariate data is diٹcult to obtain (e.g., ow-basedپ network traf-
cٽ analysis [197]) however often focus on sequential properties in their analysis. Deٽning
proper interaction schemes to support the creation of attributes at sequential level however
is nontrivial, since they apply to a diٶerent level of abstraction.
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Appendix

Regular expressions for multivariate data

Let 𝐸 be the set of all possible microEvents and let 𝐴 and 𝑉 represent the set of all possible
event attributes and values in the data set respectively. Let 𝐸𝑥𝑝 ∈ 𝐵 be any Boolean expres-
sion over attributes and values in 𝐴 and 𝑉. Furthermore, let 𝑠 be a sequence of macroEvents,
where [ ] represents the empty sequence and 𝑠 = 𝑏 ◃ 𝑠ᖣ indicates that 𝑏 is the rstٽ
macroEvent in 𝑠. Let 𝑠 = 𝑠ኻ ++𝑠ኼ indicate that 𝑠 is the concatenation of subsequences
𝑠ኻ and 𝑠ኼ. For the sake of simplicity, we assume that every macroEvent belongs to exactly
one sequence. Finally, let 𝑆𝐴𝑇(𝑒, 𝐸𝑥𝑝) return whether macroEvent 𝑒 satisٽes Boolean ex-
pression𝐸𝑥𝑝. We can now formulate the satisٽability of a regular expression𝑅 in a sequence
𝑠 as the deٽnition of a Boolean function 𝑅𝑆𝐴𝑇(𝑠, 𝑅):

𝑅𝑆𝐴𝑇([ ], 𝐸𝑥𝑝) = 𝑓𝑎𝑙𝑠𝑒
𝑅𝑆𝐴𝑇([ ], 𝜖) = 𝑡𝑟𝑢𝑒

𝑅𝑆𝐴𝑇(𝑏 ◃ 𝑠ᖣ, 𝑅) =

⎧
⎪

⎨
⎪
⎩

𝑅 = 𝐸𝑥𝑝 ⇒ 𝑆𝐴𝑇(𝑏, 𝐸𝑥𝑝) ∧ 𝑠ᖣ = [ ]
𝑅 = 𝑅1 + 𝑅2 ⇒ 𝑅𝑆𝐴𝑇(𝑠, 𝑅1) ∨ 𝑅𝑆𝐴𝑇(𝑠, 𝑅2)
𝑅 = 𝑅1 . 𝑅2 ⇒ ∃፬ኻ ,፬ኼ𝑅𝑆𝐴𝑇(𝑠ኻ, 𝑅1) ∧ 𝑅𝑆𝐴𝑇(𝑠ኼ, 𝑅2) ∧ 𝑠 = 𝑠ኻ ++𝑠ኼ
𝑅 = (𝑅ኻ)⋆ ⇒ 𝑅𝑆𝐴𝑇(𝑠, 𝜖) ∨ 𝑅𝑆𝐴𝑇(𝑠, 𝑅ኻ . (𝑅ኻ)⋆)
𝑅 = 𝜖 ⇒ 𝑓𝑎𝑙𝑠𝑒

,

where operators +, ., and ⋆ represent choice, sequential composition, and iteration (0 or
more times) respectively. 𝜖 represents the empty regular expression.

Rule evaluation

In traditional regular expressions, a character in a regular expression and input string match
each other if they are equal. However, in regular expressions for multivariate data, we reason
about macroEvents and macroEventPredicates.

Let 𝑔 be a macroEvent and 𝑃 a macroEventPredicate. The evaluation of a regular expression
with predicate logic can be directly mapped to the evaluation of a traditional regular expres-
sion by deٽning when microEvents in 𝑔 satisfy 𝑃. In case ofminimalmatching, at least one
microEvent in 𝑔 should satisfy 𝑃.

To formalize this rule evaluation, let ℒ∪{𝑊𝑖𝑙𝑑𝑐𝑎𝑟𝑑} be the set of all possible labels, and let
𝐺𝑅 be a regular expression consisting one macroEventPredicate 𝑃 and possibly one or more
operators. We say that a macroEvent 𝑔 satisٽes expression 𝐺𝑅 if and only if 𝐺𝑅𝑆𝐴𝑇(𝑔, 𝐺𝑅)
holds:
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𝐺𝑅𝑆𝐴𝑇(𝑔, 𝐺𝑅) =

⎧
⎪

⎨
⎪
⎩

𝐺𝑅 =!𝐺𝑅ᖣ ⇒ ¬𝐺𝑅𝑆𝐴𝑇(𝑔, 𝐺𝑅ᖣ)
𝐺𝑅 = ∃ exact 𝑃 ⇒ 𝐺𝑆𝐴𝑇(𝑔, 𝑃, ∃, 𝑡𝑟𝑢𝑒)
𝐺𝑅 = ∀ exact 𝑃 ⇒ 𝐺𝑆𝐴𝑇(𝑔, 𝑃, ∀, 𝑡𝑟𝑢𝑒)
𝐺𝑅 = ∃ 𝑃 ⇒ 𝐺𝑆𝐴𝑇(𝑔, 𝑃, ∃, 𝑓𝑎𝑙𝑠𝑒)
𝐺𝑅 = ∀ 𝑃 ⇒ 𝐺𝑆𝐴𝑇(𝑔, 𝑃, ∀, 𝑓𝑎𝑙𝑠𝑒)

,

where ! represents negation and 𝐺𝑆𝐴𝑇 evaluates whether 𝑔matches 𝑃 as speciٽed in the ex-
pression. The operators ∃ and ∀ specify whether macroEventPredicates should be evaluated
according to minimal versus maximal matching. The exact operator speciٽes whether
macroEvents are allowed to have additional labels that are not speciٽed in the macroEvent-
Predicate. In order to deٽne 𝐺𝑆𝐴𝑇, let:

• 𝐿𝑎𝑏𝑒𝑙𝑠(𝑃) be the Boolean expression of 𝑃 over labels in ℒ ∪ {𝑊𝑖𝑙𝑑𝑐𝑎𝑟𝑑} , and
• 𝐸𝑥𝑝𝑟(𝑃) be the Boolean expression of 𝑃 over attributes and values in 𝐴 and 𝑉.

The function 𝐺𝑆𝐴𝑇(𝑔 = ⟨𝐿, 𝐸𝑆⟩, 𝑃, 𝑜𝑝, 𝑒𝑥𝑎𝑐𝑡) is deٽned as follows:

𝐺𝑆𝐴𝑇(𝑔, 𝑃, 𝑜𝑝, 𝑒𝑥𝑎𝑐𝑡) =

{𝑒𝑥𝑎𝑐𝑡 ⇒ 𝐿𝑎𝑏𝑒𝑙𝑠(𝑃) = 𝐿 ∨ (𝐿𝑎𝑏𝑒𝑙𝑠(𝑃) = {𝑊𝑖𝑙𝑑𝐶𝑎𝑟𝑑})
¬𝑒𝑥𝑎𝑐𝑡 ⇒ 𝐿𝑎𝑏𝑒𝑙𝑠(𝑃) ⊆ 𝐿 ∨ (𝐿𝑎𝑏𝑒𝑙𝑠(𝑃) = {𝑊𝑖𝑙𝑑𝐶𝑎𝑟𝑑}) ∧

{𝑜𝑝 = ∃ ⇒ ∃፦፞∈ፄፒ𝑆𝐴𝑇(𝑚𝑒, 𝐸𝑥𝑝𝑟(𝑃))
𝑜𝑝 = ∀ ⇒ ∀፦፞∈ፄፒ𝑆𝐴𝑇(𝑚𝑒, 𝐸𝑥𝑝𝑟(𝑃))

where ⟨𝐿, 𝐸𝑆⟩ refer to the set of labels and microEvents of macroEvent 𝑔.
The wildcard label matches any label. The evaluation scheme does not require labels to be
represented as glyphs, since all operators in 𝐺𝐸𝑋𝑃𝑅 can be directly translated to the evalu-
ation of sets of microEvents. This enables analysts to pre- or post process event data without
the use of an intermediate visual representation.





�is Chapter is based on [43]:
B.C.M. Cappers. Exploring Lekagul Sensor Data using Rules Aggregations and Selections
In Proceedings of the IEEE Visual Analytics Science and Technology Challenge 2017
(Visual Analytics and Science Challenge 2017 Award “Elegant Tool for Hypothesis Testing and Generation”)

6Hypothesis Testing & 
Generation in Wildlife traffic



6

102 6.1. Hypothesis testing in Lekagul sensor Traffic

6.1. Hypothesis testing in Lekagul sensor Traffic

Figure 6.1: A) Search for rangerstops B) Deviating pattern in overview C) Inspection shows the presence of a
4Axle trucks in range routes. D) Graphical representation of taken route.

C hapter 4 showed how we can use visualization to determine the relevance of contex-
tual anomalies by inspecting them from diٶerent angles. In Chapter 5 we focused on

the visualization of collective anomalies by inspecting patterns within sequences, between
sequences, and inside event properties. In this chapter we illustrate how we can use the
Eventpad prototype to explore both contextual and collective anomalies in vehicle traٹc
data from the Visual Analytics Science and Technology Challenge 2017 [67, 68].

6.2. Introduction

The Boonsong Lekagul is a nature preserve that is used by local residents and tourists for
day-trips, overnight camping, or as a passage to get to the other side. The gates inside the
habitat aremonitored to detect suspicious activity in the wildlife or vehicle traٹcmovement.
An event is generated each time a vehicle drives through one of the gates.

Researchers of the preserve at some point discovered that the Rose-crested Blue Pipit bird
species is no longer nesting and slowly dying out. They want to investigate if there is a link
between this event and the traٹc movement. Speeding and driving overnight for instance
can scare away the wildlife. The goal of the VASTMini Challenge 1 was about answering the
following question:

What are the top 3 patterns that could be most impactful to bird life in the nature preserve?

In order to study anomalous behavior in the multivariate event sequences, we rstٽ need to
know what normal behavior looks like. To this end, the challenge also required to answer
the following subquestions:

Q1: Describe up to six daily regular patterns of vehicle driving through and within
the park.
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Q2: Describe up to six vehicle traveling patterns that occur over multiple days (e.g.,
weekly, annual, seasonal patterns).

Q3: Describe up to six patterns of activity (either single day or multiple days) that are
unusual or diٹcult to explain.

For every pattern we had to specify the type of vehicles that were involved, where they went,
and when the pattern happened. In addition, we had to come up with hypotheses that could
explain the presence of the discovered patterns.

This chapter is structured as follows. First an overview of the data set is provided. Section
6.4 presents a visual analytics approach to solve the challenge through hypothesis testing. In
Sections 6.5, 6.6, and 6.7 we present the patterns that were discovered using the approach.
Finally, the challenge question is answered and summarized in Section 6.8.
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Figure 6.2: A) Access-controlmatrix showing the type of vehicles that are allowed in different parts of the park.
B) A geographical map of the Boonsong Lekagul Natural Preserve.

6.3. Data

The Lekagul Natural Preserve records sensor events for every vehicle driving through gates
inside the habitat. Besides a timestamp and car-id, events store additional data such the type
of vehicle (e.g., car, truck, bus) and the gate name.

Thedata set consists of approximately 170,000 events and 18,000 diٶerent vehicles describing
one year of traٹcmovement. Besides the historical data we also received a geographicalmap
of the area of the area along with a description of the diٶerent types of gates inside the park
(Figure 6.2b). The map is a bitmap leٽ of 200 by 200 pixels corresponding to an area of 12
miles by 12 miles.

The data set identiٽes diٶerent types of vehicles such as buses, trucks (either transport trucks
or campers), cars, motorcycles, and ranger vehicles. Ranger vehicles are special purpose
vehicles that are used by the Lekagul personnel to drive inside the preserve.

The wildlife preserve consists of 47 gates belonging to one of the categories:
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• Entrances: All vehicles drive through an entrance when entering or leaving the pre-
serve.

• General gates: General gates provide valuable sensor data. All vehicles are allowed to
drive through these gates.

• Gates: Only ranger vehicles are allowed to use these gates.
• Ranger-stops: These sensors represent construction areas for the rangers.
• Campings: Visitors pass these gates when entering the campground.

Finally, there are regulations inside the park:

• The maximum speed limit is 25 mph.

• Traٹc either drives through the preserve, stay as day campers, or stay as extended
campers.

Figure 6.3: A) Event sequences are grouped by car_id and visualized as block sequences. B) Construction of
rules using regular expressions and logic. C) Result after rule application.

6.4. Exploration

In order to answer themain research questions of the challenge, we need to understand what
travel patterns are considered normal. According to the challenge description, we know that
certain vehicle types have restricted access in the preserve. Figure 6.2a shows an access-
controlmatrix describing the gates every car type is allowed to use. However, the description
is not clear about buses visiting campings or whether ranger vehicles are allowed to leave the
preserve. Combined with the speed limit restriction in the park, this raises questions such
as:

• Are there vehicles speeding on certain roads?
• Is it possible for trucks to visit campings or ranger-stops?
• Are ranger vehicles always staying inside the preserve?
• Is it normal for visitors to stay for more than a week in the preserve? And do they
eventually leave?
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• How many times do vehicles visit the preserve in a year?

To answer these questions we used the Eventpad system for quick veriٽcation of these ques-
tions using rules, aggregations, and selections. In Eventpad we can map every sensor event
to a glyph (Figure 6.3A) and group events into sequences by an attribute of choice. This en-
ables users to inspect data from diٶerent points of view. Furthermore, the system can also
use the event timestamp information to derive additional metadata such as the hour, day,
week, and year of the event’s occurrence. For a demonstration of the system in practice, we
refer to the supplementary videoڂ.

In Eventpadwe can search and color glyphs based on event attributes of interest using regular
expressions and predicate logic (Figure 6.3C). We start the analysis by creating 5 rules color-
ing all camping events orange, entrances green, general-gates blues, rangerstops yellow, and
rangerbase events pink. All time and date formats are stated in the format “day-month-year
hours:minutes” (24 hours notation).

6.5. Q1: Daily patterns

For the inspection of frequent daily patterns in the data, we group the events by car-id
and date such that a sequence represents the travel pattern of a vehicle per day. We study
frequent patterns in the data by clustering the sequences based on their visual representation
and sorting them by frequency. The result is shown in Figure 6.4A.

Figure 6.4: A) Vehicle patterns as shown as sequences of glyphs. B) Scented widgets of (derived) attributes. C)
The Rule view shows an overview of the applied rules. D) Eventpad enables the discovery of patterns between
sequences using data alignment.

https://www.youtube.com/watch?v=IBgJ3R9cAvQڂ
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Pattern Frequency Target Group Regex Pattern

1.From a camping to
an exit

≈26%
≈ 50% 2Axle cars
≈ 30% 2Axle trucks
≈ 20% 3Axle trucks

2.From an entrance
to a camping

≈25%
≈ 50% 2Axle cars
≈ 30% 2Axle trucks
≈ 20% 3Axle trucks

3.Day trips through
the preserve

≈ 43%

≈ 40% 2Axle cars
≈ 23% 2Axle, 3Axle trucks
≈ 15% 4Axle trucks, 2Axle,

3Axle buses
4.Ranger roundtrips ≈ 4% 2P traٹc only

Table 6.1: Frequent patterns in 25523 sequences. Most of the patterns were done by 2Axle cars. The patterns
are matched over entire sequences only.

Applying Multiple Sequence Alignment [31] on the most frequents sequences enables us to
identity four main patterns, namely vehicles entering (Figure 6.4B-1), leaving (Figure 6.4B-
2), driving through the preserve (Figure 6.4B-3), and ranger traٹc (Figure 6.4B-4). We can
count the frequency of these patterns using regular expressions. Table 6.1 shows the fre-
quency of the four patterns for diٶerent types of vehicles. Sequences that do not match
patterns in Table 6.1 are vehicles driving overnight. These are discussed in Section 6.6. Next,
we explore the daily patterns in greater detail.

Daily patterns entering and leaving campings
We can search for all sequences visiting campings by searching for the orange blocks using
Eventpad’s ndٽ functionality. After searching, the Attribute view in Figure 6.5A-2 shows that
vehicles don’t enter the campings between 02:00 and 04:00. Maybe vehicles are not allowed
to enter campings in the middle of the night (e.g., curfew). Furthermore, campings are only
visited by 2Axle cars, 2Axle trucks, 3Axle trucks, and ranger vehicles corresponding to the
Matrix 6.2a in Section 6.4. This is also illustrated in Figure 6.5A-1.

Extraction of the camping events (Figure 6.5B) using the search interface and selecting the
trucks in the Attribute view shows that trucks visit at most three campings per day. The
dashed lines around the selected sequences show that there are also other vehicle types with
these patterns. Coloring the blocks using a more detailed rule set shows that Camping1
is least visited (Figure 6.5C-3). Figure 6.5C-4 also shows that the camping is not visited in
December, March, and April.

Daily patterns in day trips
We can inspect the day trip traٹc by looking for all sequences whose rstٽ and last events
are entrance events. Since we did not see any 4Axle trucks and buses driving to campings,
we decided to inspect these vehicles in greater detail by creating a lterٽ in the Context view
(Figure 6.6A).
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Figure 6.5: A) Searching for camping events in vehicle patterns entering and exiting campings. B) Extraction
of the camping events shows that buses and truck visit at most three campings per day. C) Grouping the se-
quences by length shows that Camping1 is least visited.

The sequence clustering shows 450 cases of trucks and buses driving through the preserve
without visiting other gates. After selecting the bus sequences only, shown as selected se-
quences in Figure 6.6A, we see that these vehicles only visit the preserve once per day (i.e.,
there are at most two entrance event per sequence).

After loading a more detailed rule set, we can see the number of times sequences start and
end at diٶerent entrances (Figure 6.6B).The alignment in Figure 6.6C shows that apart from
one sequence the data is nicely structured. The long sequence represents the unauthorized
access of a 4Axle truck which is discussed in Section 6.7.

Figure 6.6: A) Inspection of 4Axle truck and bus patterns. The travel patterns by buses are highlighted in blue.
B) Application of detailed ruleset. C) The alignment of bus and truck traffic shows a suspicious long sequence
(indicated by the black box).
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Traffic speed
We can analyze the traٹc speed of vehicles that do not stay in campings by dividing the
duration of vehicles routes by the distance they have traveled on the map. The map shows
that the fastest route, involving the least number of gates, from north to south is from En-
trance0 to Entrance3 (Figure 6.7C). Similarly, the fastest route from east to west is
from Entrance2 to Entrance4.

Figure 6.7: A) Sequences from and to an entrance. B) The travel time between routes can be analyzed by
inspecting the sequential properties of the routes in the Attribute view. C) The distance between two gates is
calculated using the color histograms in Adobe Photoshop.

Figure 6.7A shows an overview of all vehicle patterns starting and ending with entrance
events. Selecting the sequences with camping events shows that 28% of the sequences visit
campings. These vehicles correspond to 2Axle cars, 2Axle trucks, and 3Axle trucks. Figure
6.7A-1 shows that these vehicle do not visit campings between:

• 02:00-04:00 and

• 20:00-21:00.

Possible explanations are that people are having dinner between 20:00-21:00, campings are
closed after 01:00, or people are sleeping between 02:00-04:00.

Most of the other traٹc travels directly from entrance to exit. After loading a more detailed
rule set, we can see that most of the direct routes correspond to the main roads (E0, E3)
and (E4, E2) (Figure 6.7B). Selection of the routes between E0 and E3 shows in the Attribute
view that the route on average takes 1341 seconds to drive (Figure 6.7B). Using Photoshop
histograms we know that the travel distance is 219 pixels (Figure 6.7C). Knowing that 200
pixels on the map correspond to 12 miles, we can calculate the average speed as follows:

distance
time = 219 pixels × (12miles/200 pixels)

1341 seconds × (1 hour/3600 seconds) ≈ 35𝑚𝑝ℎ

which is in violation with the 25 mph speed limit. Vehicles that drive between E2 and E4 do
not exceed the 25 mph limit.
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Daily patterns in ranger shifts
In contrast to regular traٹc, ranger vehicles always start and end in the Rangerbase (Figure
6.8A). In addition, Figure 6.8C shows that they do not travel between 04:00-05:00 in the
morning. The absence of entrance events conٽrms that ranger vehicles are not leaving the
preserve.

Figure 6.8: A) Frequent ranger shifts. B) Extraction of rangerstops. C) Properties of longest shift.

Figure 6.8A-1 shows that 62% of the ranger shifts visit campings between 06:00-22:00. In
almost half of these shifts, rangers drive to Camping8. We can observe this by lteringٽ
the traٹc by camping events and checking the frequencies of all campings in Eventpad’s
Attribute view (also shown in Figure 6.8B-2). After lteringٽ the sequences by ranger stops
and clustering the sequences using a detailed rule set, we can see that Rangerstop6 is
most frequent in the yellow sequences. This is probably the fastest way to get from the west
side of the park back to the base (Figure 6.8C-3). The longest ranger shift is approximately 9
hours visiting almost all stops (Figure 6.8C-4).

Car-type Duration distribution (log) Normal Outliers
2Axle cars Between 0.5

hour and
37 days

2 minutes,
350 days

2Axle trucks Between 0.5
hour and
20 days

4 minutes,
107 days

3Axle trucks Between 0.5
hour and
10 days

4 minutes,
23 days

2P vehicles,
4Axle trucks,
and buses

Between 0.5
and
10 hours

12 hours

Table 6.2: Travel duration of vehicles in the preserve. The outliers on the right in the histograms correspond
to vehicles either staying very long inside the park or visiting the preserve multiple times per year.
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6.6. Q2: Periodical patterns

To study weekly, monthly, and seasonal patterns in travel history, events are grouped by
car-id, such that every sequence shows the travel activity of a car throughout the year.
This enables us to ndٽ patterns inside the sequences and discover signs of repetitive behavior.

We can inspect the start and end time of every sequence in the Attribute view. Table 6.2
shows the travel time distribution of vehicles in the data set. In the rightmost column we
can see that there are 2Axle trucks and cars whose time diٶerence between the rstٽ time
entering and last time leaving is more than 100 days. Since it is possible for a vehicle to
enter and exit the preserve multiple times in such timespan, we have to check whether this
is indeed the case.

Number of visits
Wecan count the number of visits inside the sequences by creating a rewrite rule that replaces
every subsequence of entrance and exit events in a purple block. To ensure that the rule does
this in a non-greedyway, we state that in between an entrance and exit event another entrance
event is not allowed (Figure 6.9B).

Figure 6.9: A) Event sequences are grouped bycar-id only. B)We can count the number of visits by rewriting
subsequent entrance events to purple blocks. C) Result after applying the rules. The purple sequences show
that there are vehicles visiting the preserve multiple times in one year.

Filtering the purple blocks shows that most vehicles enter and leave the preserve at most
two times (Figure 6.9C). The long sequences belong to diٶerent vehicle types. In the next
paragraphs we inspect the three longest sequences in detail to ndٽ potential explanations.

Tourist bus activity?
The longest purple sequence corresponds to a 2Axle truck that has been active in the park
for 107 days. We can inspect this sequence in greater detail by disabling the purple block
rewrite rule and loading in a more detailed rule set. Figure 6.10A shows that the truck only
drives between Entrance4 and Camping4 between 23:00-00:00 and 14:00-15:00 (Figure
6.10A-1). Since the vehicle only drives this path during high-season (July–October, Figure
6.10A-2) covering a large part of the preserve, we believe it could be a tourist bus or some
taxi service. For unknown reason, the vehicle only travels on Sundays,Mondays, and Fridays
(Figure 6.10A-3).
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Figure 6.10: A) Weekly pattern of tourist bus in preserve. B) Geographical representation of the vehicle route.
Route in red is the place where the bus entered the preserve before it started driving between Entrance4
and Camping4.

Stationary camper?
The second longest purple block sequence corresponds to a sequence of 37 days (Figure
6.11A-1 in which one 2Axle car (Figure 6.11A-2) travels on Sundays and Fridays (Figure
6.11A-3 from Entrance0 to Camping6 and vice versa.

Figure 6.11: A) Weekly pattern vehicle visiting camping. B) Geographical representation of the travel pattern.

Thevehicle only travels in the period 24-06-2015 until 30-07-2015 (Figure 6.11A-4) between
13:00-14:00 and 22:00-23:00 (Figure 6.11A-5). On average he spends 2 days in the camping
before he leaves again. Maybe the tourist has a stationary camper located there.

The third longest sequence also corresponds to a 2Axle car (Figure 6.12A-1). This vehicle
travels on Fridays on Sundays as depicted in Figure 6.12A-2. He travels from Entrance3
to Camping0 and vice versa between 09-03-2016 until 22-04-2016 (Figure 6.12A-3).
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Figure 6.12: A) Long stay of visitor at camping 0. B) Graphical representation of the driven pattern.

Night patterns
In the previous section we studied periodical patterns by looking for repetition in the travel
pattern of a single vehicle. To study patterns between vehicles overnight we only consider
the traٹc between 23:00 and 04:00. This is achieved using the query illustrated in Figure
6.13A. Next, we group the sequences by date (instead of car-id) and color the events by
car_type. Now a sequence shows the number of times vehicles have passed through gates
per day.

Sorting the sequences alphabetically shows that on certain days car type events occur more
than others (Figure 6.13B). Selecting the sequences with 3Axle buses for instance shows in
theAttribute view that night activity of these vehiclesmostly happens during low season (i.e.,
the period October-April, Figure 6.13B-1. Furthermore, we can use a mini-map to inspect
patterns in larger collections of sequences.

Figure 6.13: A) Query for all traffic overnight. B) Large trucks and buses drive in the night. Few campings are
visited. C) Overview of night patterns per day.
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6.7. Q3: Unusual Patterns

The third subquestion refers to the detection of unusual patterns. In the previous section
we focused on the detection of periodic patterns by exploring the number of times vehicles
visited the preserve. Although this gave us new insights, we did not check if there are strange
routes inside a single visit. To investigate this closer we rstٽ group the events by car-id
and color the events by car type (illustrated in Figure 6.14).

After clustering the sequences and sorting the sequences alphabetically we see that every
vehicle has a few long sequences. The longest sequence of the 2Axle trucks in Figure 6.14B
corresponds to the tourist bus in Section 6.6. The longest sequence of 3Axle trucks was un-
expected. TheAttribute view in Figure 6.14A-1 shows that the truck only visitedCamping1
and Camping5 on September 8 and 9 (Figure 6.14A-2). Figure 6.14A-3 shows that he only
visited the places between 08:00-09:00 and 16:00-18:00.

Figure 6.14: A) Frequent and rare car patterns can be discovered by counting howmany events are generated
per car. B) The mini-map widget shows a long pattern in 2Axle truck sequences.

Unauthorized passage
According to the accessmatrix in Figure 6.2, only ranger vehicles are allowed to travel through
rangerstops. In Eventpad we can easily verify this statement by searching for sequences with
rangerstops whose car type diٶers from ranger vehicles (Figure 6.15A).This reveals 23 cases
where 4Axle trucks (Figure 6.15B-2) are going from Rangerstop6 to Rangerstop3 to
Rangerstop6 via Gate6 (Figure 6.15A-1). Inspection of the multivariate data in these
sequences in a tabular view shows that the sequences occur between May 2015 and May
2016 (except April, Figure 6.15B-3) between 02:00-05:00 (Figure 6.15B-4) on Tuesdays and
Thursdays (Figure 6.15C-5).

Long term visit
The third longest sequence in the data set (Figure 6.16-1) corresponds to a 2Axle car traveling
from 06-06-2015 to 20-05-2016 on days other thanWednesday and Saturday (Figure 6.16-2).
He travels from Entrance0 to all the campings (except for Camping7 and Camping8)
between 08:00-19:00 (Figure 6.16-6). After approximately one month (Figure 6.16-3) he
travels to the next camping (except in the month of April, Figure 6.16-4). According to the
last event, he never left the preserve (Figure 6.16-5). The ordering of camping visits is strange
and seems random. Maybe he is an ornithologist seeking for a particular bird species.
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Figure 6.16: Strange pattern of a vehicle traveling through the entire preserve in 350 days. It is unclear why he
chose to visit the campings in this particular order.

Traveling truck
Between 12-07-2015 and 04-08-2015 there is a 3Axle truck (Figure 6.17A-1) traveling be-
tween Camping6 and Entrance4 (Figure 6.17A). He initially entered the preserve via
Entrance2 (Figure 6.17A) and drives only on Tuesdays and Sundays (Figure 6.17A-2). It
is unclear why he entered the preserve from Entrance2.

Day trip loops
When extracting day trip patterns in Section 6.5, we noticed that there are sequences with
the same entrance and exit. Table 6.3 shows a summary of these “loops”. Inspecting these
sequences in greater detail shows that they are caused by 4Axle trucks (Figure 6.18D-1), trav-
eling on all days except Mondays and Fridays (Figure 6.18D-2) between 18:00-22:00 (Figure
6.18D-3).

The sequences can be delivery trucks dropping supplies at entrances for special occasions
(e.g., reworksٽ on the 4th of July). However, Figure 6.18D-4 shows that the time between
entering and leaving is at most 5 seconds.
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Figure 6.17: A) Long and repeated stays of a visitor in Camping 6. He uses a 3axle truck to drive from and to
the camping. B) The route in red is only traveled once by the visitor.

Figure 6.18: A) Extracting direct roads B) Inspecting routes with a more detailed ruleset C) Grouping traffic by
car type. D) Histograms showing the location of these sequences in time.

From To Duration (seconds) Arrival Date
Entrance1 Entrance1 5 04-07-2015 22:02
Entrance1 Entrance1 5 23-03-2016 21:06
Entrance2 Entrance2 5 26-06-2015 22:34
Entrance3 Entrance3 6 01-09-2015 20:45
Entrance3 Entrance3 5 18-05-2016 18:10
Entrance0 Entrance0 5 22-10-2015 20:03

Table 6.3: Routes with the same entrance and exit are taken throughout the year. Strangely, the time between
entering and exiting is less than 5 seconds.
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6.8. Conclusions

In the previous sections we have discovered diٶerent daily, periodic, and unusual patterns
using Eventpad to gain better insights in desired and undesired sequences in the Lekagul
traٹc data. Based on these observations we believe that there are three main reasons that
are most impactful to bird life in the nature preserve, namely:

• Vehicles on the road betweenEntrance0 andEntrance3 drive too fast. The noise
can disturb the wildlife.

• The repeated access of vehicles to unauthorized locations (in the middle of the night)
and the presence of systematic travel activity across the entire preserve (e.g., tourist
buses) during high-season can prevent wildlife from establishing a proper breeding
place.

• The continuous nightly activity of vehicles such as buses and trucks over the entire
year can disturb the wildlife.

We have shown the eٶectiveness of Eventpad to quickly gain insight in the VAST 2017 Mini
Challenge 1 data set. The ability to visually encode event properties in sequences using rules
enables users to quickly discover patterns inside sequences. Pattern aggregations and selec-
tions enable users to study commonalities and diٶerences between sequences while staying
aware of high-level phenomena in the data set.
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7.1. Rapid Malware Analysis and Reverse Engineering

Figure 7.1: Visualizing A) Jigsaw and B) CryptX ransomware activity. C) Partitioning the data by file nesting
shows high repetition of file creation and deletion patterns in the mini-map. D) Inspection of protocol data in
a tabular view shows the creation of duplicate files with a .fun extension. E) Repetitive “Open-Find-Close”
patterns as a result of recursive directory scanning.

F orensic analysis of malware activity in network environments is a necessary yet very
costly and time-consuming part of incident response. Vast amounts of data need to be

screened, in a very labor-intensive process, looking for signs indicating how the malware
at hand behaves inside e.g., a corporate network. We believe that data reduction and visu-
alization techniques can assist security analysts in studying behavioral patterns in network
traٹc samples (e.g., PCAP). We argue that the discovery of patterns in this traٹc can help
us to quickly understand how intrusive behavior such as malware activity unfolds and dis-
tinguishes itself from the “rest” of the traٹc.

In this chapter we present a use case of the visual analytics tool EventPad and illustrate how
it is used to gain quick insights in the analysis of PCAP traٹc using rules, aggregations,
and selections. We show the eٶectiveness of the tool on real-world data sets involving oٹce
traٹc and ransomware activity.

7.2. Introduction

Theanalysis and identiٽcation ofmalware in computer environments is a complex and time-
consuming task due to the size and variety of generated network traٹc. Even if security an-
alysts are aware of the presence of undesired activity (e.g., ransomware encryption patterns)
it is still diٹcult to eٹciently locate this behavior in large amounts of traٹc using tools such
asWireshark [63] without a starting point [92, 203]. Automated analysis techniques already
greatly assist analysts in ndingٽ points of interest. In practice, however, they are often time-
consuming to setup or very diٹcult to tune properly (e.g., managing false positives rates).
We need alternative techniques to quickly explore patterns in malicious network traٹc.

In this chapter we present the application of a novel visualization technique Eventpad [47]
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to apply dynamic behavioral analysis to ransomware execution sequences. Instead of auto-
matically trying to discover patterns of interest, we show how we can quickly gain insights
in (un)desired traٹc patterns by visually encoding traٹc based on environmental knowl-
edge. In this study we show how the analysis technique works, the kind of information it can
reveal, and how it enables analysts to quickly study leٽ access behavior using rules, aggrega-
tions, and selections. Speciٽcally, our main contributions are:

• a visual analytics approach to forensic analysis of malware traٹc enabling users to
visually inspect and detect (un)desired patterns of interest using multivariate regular
expressions.

• a use case of the EventPad system to malware analysis demonstrating how

– visualization of execution sequences can be used to gain insight in underlying
ransomware mechanics;

– rules, automated techniques, and user interaction enables users to quickly test,
discover, and compare traٹc execution sequences.

• the introduction of mini-map functionality and a temporal view to study larger event
collections and the frequency of sequential patterns over time.

The chapter is structured as follows. First, Section 7.3 presents relatedwork. Next, we discuss
how our visualization techniques are beneٽcial for the analysis or identiٽcation of malware
traٹc. In Sections 7.5 and 7.6 we provide example explorations on real-world ransomware
and oٹce traٹc and discuss the limitations of the approach. Finally, conclusions and future
work are presented in Section 7.7.

7.3. Related Work

Malware visualization is an extensively studied topic covering a wide variety of techniques
in diٶerent domains. Eventpad focuses on dynamic malware analysis using Deep Packet
Inspection [253]. Analysis techniques that take the source code of the malware into account
(i.e., static and hybrid malware analysis) are considered out of scope. For more information
about these techniques, we refer to the handbook of Sikorski et al. [279].

The visualization literaturewith respect to dynamicmalware detection can be grouped in two
main categories, namely malware discovery versus identiܦcation. We start with an overview
of common malware visualization techniques, discuss current limitations, and how we ad-
dress these in Eventpad. Finally, we describe diٶerent visualization techniques that have
been applied in the areas of Deep Packet Inspection and ransomware visualization.

7.3.1. Malware discovery

Malware discovery is the task of extracting samples from (network) environments that show
signs of undesired/intrusive behavior. Shiravi et al. [274] made an extensive overview of
diٶerent security visualization techniques that have been used for:
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• detection: visually spot anomalies using node-link diagrams, parallel coordinate plots
and pixel visualizations [80];

• correlation: study patterns in IDS alerts to enhance decision making [203]; and

• assessment: apply root-cause analysis through semantic zooming [66] anduser-interaction
[347].

Zhang et al. extended this survey [353] by studying how current visual encodings are eٶec-
tive for detection, correlation, and assessment tasks [229]. We believe however that systems
for network monitoring and digital forensics should not be limited to a single task or visual
encoding, as the set of user tasks can change during analysis [134]. In Eventpad we aim
for an alternative approach where analysts can interactively deٽne themselves which data
attributes should be represented in what way to serve their task at best.

With ILAB, Beaugnon et al. [22] already illustrated the value of human interaction to in-
crementally label data instances for supervised intrusion detection models. Systems such
as KAMAS [270, 327] also use rules to search for patterns in call sequences, but limit their
sequential analysis to only this attribute. In Eventpad we show how incremental labeling
combined with unsupervised clustering and alignment techniques are eٶective for the dis-
covery of patterns in multivariate network traٹc.

7.3.2. Malware Identification

Gaining insight in the working of malware is crucial for understanding:

• what (kind of) systems are aٶected by the malware;

• the type of services or data the malware is interested in; and

• what countermeasures can be used to prevent this type of software from being exe-
cuted in the future.

Eventpad assists analysts in the identiٽcation of (malicious) execution sequences by enabling
users to deٽne and search for patterns of interest using rules. Visual comparison of the
packet details between the found sequences enables analysts to see whether the sequences
show overlap and can be related to existing malware families or applications.

Wagner et al. [326] provided an extensive analysis of visualization techniques to visually
compare malware samples, study samples individually, and summarize collections of mal-
ware together. Popular systems in these categories are CantorDust [79], Nataraj et al. [231],
and Anders et al. [9] respectively. In their taxonomy Wagner et al. identiٽed three main
limitations of current systems and challenges for the future, namely

• Incorporating expert knowledge through interaction;
• Intertwining analytical methods with visualization; and
• Bridging gaps between forensics and classiٽcation through rule generation.
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Figure 7.2: Deep Packet Inspection of network packets obtained using tshark. Parsed traffic is grouped by
an attribute of choice and represented as series of blocks.

In Eventpadwe tackle these limitations by enabling analysts to deٽne new patterns of interest
using conditional formatting and rewrite rules. Tight coupling between automatedmethods
and user input is achieved by interactively visual encoding packet sequences as blocks. The
third limitation refers to the inability of malware analysis systems to test the eٶectiveness
of newly discovered rules and signatures for the analysis and classiٽcation of other malware
samples. In Eventpad rules can be added and removed dynamically throughout data explo-
ration and exported for future analysis tasks.

7.3.3. Deep Packet Inspection

Eventpad uses Deep Packet Inspection (DPI) to study user behavior in network traٹc. Var-
ious systems have been proposed to visualize DPI data for the detection of Advanced Per-
sistent Threats [280]. Systems like WireShark [63], SNAPS [45], and CoNTA [46] already
support the analysis of traٹc at application level, but the provided search mechanisms and
visualizations do not support the comparison and analysis of sequential patterns in network
traٹc. However, Camiña et al. [42] showed that for the detection of for instancemasquerade
attacks, the analysis of sequential patterns is crucial. We show howwe can extendWireshark
to enable sequential analysis using Eventpad. With respect to ransomware analysis, Reuille
et al. [262] analyzed the spreading of the cryptolocker virus by visualizing OpenDNS traٹc.
Krzysztof et al. [183] also illustrated the value of visualization to gain faster insights in larger
collections of traٹc.

In summary, current malware visualization techniques use static visual encodings to either
focus on the detection of speciٽc malware behavior or the identiٽcation of it. Systems that
provide interaction and analytics methods provide little support for incorporating expert
knowledge in the system or feeding new discovered patterns in these analytical methods.
Eventpad enables interactive visual encoding through rule generation to dynamically detect
signs of new malware and to verify the presence of existing ones.

7.4. Eventpad

Eventpad is a dynamic behavioral analysis tool designed to study sequential patterns in net-
work traٹc. Without loss of generality, we assume that a network packet (or event) has a
timestamp and belongs to a particular sequence (also known as a conversation, session, case
or trace).
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Figure 7.3: A) Users can visually encode sequences according to attributes of interest by constructing one or
more rules. B) Rules are constructed usingmultivariate regular expressions. Users can design their ownblocks
to highlight points of interest. C) Event collection after rule rewriting.

In Eventpad we visualize network traٹc as a list of block sequences where sequences cor-
respond to network conversations and packets correspond to blocks (Figure 7.22). Initially
every packet is represented by a gray block. Users can create rules to replace block sequences
by a new (custom styled) one. Rules can be used for three purposes:

• discover patterns by visually encoding packets according to attributes of interest;

• test the presence of (un)desired behavior through pattern matching; and

• guide automated techniques in discovering patterns by deٽning new (higher level)
concepts.

Similar to regular expressions, operators such as sequential composition, iteration (0 ormore
times), and choice are provided to construct more complex replacements (Figure 7.4A). Fig-
ure 7.3 shows an example of the rule construction interface.

Double-clicking a block in the interface results in a popup where users can add Boolean
constraints to the chosen block (Figure 7.3B, similar to Wireshark). Only blocks whose at-
tribute and values match the Boolean constraint are replaced by the rules right-hand side.
For a more formal model of the query mechanism, we refer to the work of Cappers et al.
[47]. Multiple rules can be applied after one another to enable incremental rewriting of the
traٹc. This is also illustrated in Figure 7.4B.

The rules enable users to highlight and visual encode traٹc properties that are of inter-
est. Automated techniques such as clustering and alignment in turn can use this labeling
to discover patterns between packet sequences. Clustering enables users to study pattern
frequencies, whereas alignment can detect overlap between similar sequences using Multi-
ple Sequence Alignment [31]. Figure 7.5 shows a schematic overview of all operations that
can be applied to the Eventpad system.
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Figure 7.4: A) Block expression use operators that are similar to regular expressions. B) Example where multi-
ple rules can apply to the same block.

Eventpad consists of four main components.

• The Sequence view (Figure 7.6A) visualizes conversations as sequences of blocks. The
minimap on the right (Figure 7.6B) enables the discovery of patterns over larger data
collections. Selections can be stored using a Context view (Figure 7.6D);

• The Rule view (Figure 7.6F) shows the ordering in which rules are applied to the data.
The icicle plot above (Figure 7.6E) shows how much of the data is aٶected by every
rule;

• The Attribute view (Figure 7.6C) shows an overview of all event properties as his-
togram widgets. The histograms are highlighted whenever one or more blocks are
selected. The histogram widgets enable users to inspect overlap in properties between
two or more blocks;

• The Line chart (Figure 7.6G) plots event frequencies over time to detect temporal pat-
terns such as bursts, drops, and periodicity. The colors in the chart show when and
how often rules have been redٽ over time.

7.5. Use cases

To illustrate the eٶectiveness of the analysis tool for digital forensics, we applied Eventpad
to the analysis of leٽ access behavior in a real oٹce network. For a better overview of how
the system is used in practice, we refer to the supplementary materialڂ. The systemڃ and
recorded ransomware samplesڄ are also available for download.

https://youtu.be/g4brXOtPELIڂ
http://www.event-pad.comڃ
https://security1.win.tue.nl/doku.php?id=artefacts#data_sharingڄ

https://youtu.be/g4brXOtPELI
http://www.event-pad.com
https://security1.win.tue.nl/doku.php?id=artefacts#data_sharing
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Figure 7.5: Workflow scheme of Eventpad. Simplify event sequences by incrementally replacing block se-
quences using rules. Compare execution sequences by applying clustering and alignment techniques to the
rewritten data. Inspection of attributes in overlapping sequences enables analysts to identify (un)desired be-
havior in the traffic. New insights can directly be incorporated in the analysis by defining new rules throughout
exploration.

7.5.1. Problem statement

Over the last few years ransomware attacks have become an increasing threat to society, with
the primary aim to earn money by captivating (critical) resources. The largest class of these
viruses use leٽ encryption to achieve their goal [252]. Recent occurrences of WannaCry
and Petya [219] aٶected over 300.000 computers worldwide causing millions of nancialٽ
damage by encrypting network shares. The faster we can locate and identify their underlying
mechanics, the better.

Traditional behavioral analysis tools discover ransomware by analyzing entropy changes in
network traٹc [288]. These techniques however suٶer from high false positive rates, since
entropy alone cannot distinguish between legitimate versus ransomware leٽ encryption. To-
gether with Mülder et al. [228] we have extended entropy-based detection in Samba shares
by also incorporating leٽ mutation patterns (e.g., read, write, open, close, delete) in the anal-
ysis. A signiٽcant challenge however was to discover these patterns in network samples us-
ing tools such as Wireshark. This involved manually tracking leٽ identiٽers and stepping
through captured network traٹc for every connection. In this use case we demonstrate how
we can use Eventpad to reduce days of manually reverse engineering leٽ access activity to
just a few hours using visual analytics.
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7.5.2. Experimental setup

To study ransomware activity, we setup a Honeypot and built a detector that can protect
Samba shares by passively observing the network traٹc [228]. This lab consisted of four
victim virtual machines, each with a diٶerent version of the Microsoft Windows operation
system, which were connected to a Samba share on a virtual machine running Windows
Server 2012. The Samba share contained a large collection of ,lesٽ loosely based on the oٹce
type lesٽ found on the network shares at the university and the source code repositories of
a number of software projects. All these machines were in a virtual network connected to
the Internet, since some malware will not run if it cannot connect to speciٽc command and
control servers [279].

All network traٹc in this virtual network was captured using tshark. Before and after
the experiment all virtual machines were reset to a veriٽed snapshot. The malware in the
experiment was captured by the university, found on TheZoo [232], or found in spam e-
mail. Every sample is executed on the victim machines to ensure encryption of the share.
Services were stopped once the encryption phase of the samples was over.

Using our setupwe captured activity traces from two common ransomware families: CryptX
and JigSaw. We also captured some traٹc from the university network shares to test if
these ransomware samples were present there.

Figure 7.7: A) Highlight rules that are initially applied for the analysis of office traffic. B) Grouping the traffic by
a) smb2.sesid, b) file nesting, and c) smb2.fid shows how different patterns can be discovered.

7.5.3. Partition Strategies

Although the sequence of opening, reading, and closing a leٽ in general may not be suspi-
cious, they can be considered malicious when executed by a particular user and/or moment
in time etc. The way we group packets into sequences therefore determines the type of pat-
terns that we can discover. This is also referred to as context [46].

Whenever a leٽ or directory is opened, a Samba request is sent. Directories are closed when
all lesٽ in that directory are closed. This results in a nesting pattern of Open and Close
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requests that shows the order in which lesٽ are accessed in the traٹc (illustrated in Figure
7.7B). Naively grouping traٹc by Samba’s session id (Figure 7.7B-a) resulted into one large
sequence as we discovered that the ransomware samples typically executed all behavior in
one session. Although we are still able to discover patterns, this can hinder inter-sequence
analysis with clustering and alignment techniques. Grouping the traٹc by leٽ access on the
other hand does not preserve the order in which certain leٽ operation are performed (Figure
7.7B-c). This information however is crucial for understanding how systems deal with lesٽ
and data transfer.

To ensure that this ordering is preserved, we implemented a stack-based session based on
leٽ nesting. Each time a leٽ is opened, the corresponding lenameٽ is pushed to a stack. The
name is popped from the stack upon encountering its corresponding close request. Figure
7.8 shows the eٶect of traٹc clustering when ransomware traٹc is grouped by session, leٽ
nesting, or leٽ id. The frequency of every pattern is shown at the end of every pattern.

Figure 7.8: A) Grouping by smb2.sesid shows repetitive behavior. B) Grouping the data based on file nest-
ing shows repeated access of files depending on their height in the file directory structure C) Grouping by
smb2.fid shows the file operations applied per file.

7.5.4. Ransomware

To study the creation, deletion and leٽ modiٽcation in the ransomware samples, we initially
created rules to highlight all smb2.cmd open, close, read, write in yellow, pink, blue, and
purple blocks respectively (Figure 7.7A). In case of Sambaٽles asmb2.flags.disposition
is set true whenever a leٽ is ready to be deleted. These blocks are marked in red. Figure 7.1A
and 7.1B show some of the patterns we discovered in Jigsaw and CryptX traٹc.

Jigsaw

We initially start exploration of approximately 1,500,000 packets (Figure 7.6D) by analyzing
the traٹc by smb2.sesid. This resulted into one large sequence per session. Inspection
of the smb2.create.action attribute (Attribute view, Figure 7.6B) shows that there are
two ways in which lesٽ are opened, namely

• FILE_OPEN If the leٽ already exists, return success; otherwise, generate an error.
• FILE_OVERWRITE_IF: Overwrite the leٽ if it already exists; otherwise, create one.
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Figure 7.9: A) Repetititve patterns in the Jigsaw traffic. B) Clustered open close patterns show high similarity.
C) Inspection of read and writes shows that data is copied to files with .fun extension.

These are marked by a yellow “Overwrite IF” and “O” blocks respectively. The attribute
widget smb2.nt_status in Figure 7.6C shows that the Jigsaw virus did not produce any
errors when generating the requests.

After applying the highlight rules in Figure 7.7A, the minimap shows repetitive patterns in
the traٹc (Figure 7.1A). Closer inspection of these patterns shows that at some point lesٽ are
repeatedly deleted (Figure 7.9A, marked by the “X” block). We can also see that the “OIF”
requests only occur before lesٽ are read and written. Inspection on the line diagram shows
that the pattern repetition started around 23:15 (Figure 7.9A line chart).

To study the frequency of the discovered pattern we constructed a rule that “cuts” the data
upon encountering leٽ deletion blocks (scissors, Figure 7.9). This resulted into 1,195,817
sequences as illustrated in Figure 7.9D. Clustering the sequences however shows a lot of sim-
ilarity between the diٶerent sequences (Figure 7.9B). Hovering the mouse over the “read”
block of the clustered sequence shows a list of all lesٽ that have been accessed in the ex-
act same way (Figure 7.9C). Grouping the data with our stack-based session approach and
clustering the data reveals three main patterns in the traٹc (Figure 7.1C):

• The creation of a new encrypted leٽ X.fun,

• The deletion of the original leٽ X, and

• Directory traversal using repeated Open Find Close patterns

This enables us to see that the Jigsaw virus rstٽ creates a copy of the target leٽ before its
starts encryption. After the encryption, the original leٽ is deleted instead of overwritten.
The attack is awedپ in the sense that the original leٽ could still be recovered from disk using
Disk Recovery tools [115].
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Figure 7.10: Discoveringpatterns in Jigsaw traffic by capturing repeating access patterns in rules. A) Reduction
from1429 to 49 unique patterns. B) Rule set to compress repeating find, open, and close behavior. C) Resulting
traffic after rewriting.

In order to reverse engineer the mechanics of the virus, we construct rules to capture re-
peated block patterns to higher level concepts. Figure 7.10B shows the rules that are applied
to simplify the traٹc. The rstٽ two rules compress repetitive occurrences of open and close
patterns. The frequency of these patterns depends on the leٽ depth in the directory struc-
ture. Since the number of sequential read and write patterns depends on the size of the
requested ,leٽ we also create a rule that compressed these sequences in a single block. After
compression, the number in the upper right corner of the blocks shows how many blocks
are contained in the new block.

Applying alignment on the remaining patterns revealed that overlap between these leٽ access
behavior is large (Figure 7.11A). Figure 7.11B shows the resulting regular expression that
captures the Jigsaw traٹc.

Figure 7.11: Discoveringpatterns in Jigsaw traffic by capturing repeating access patterns in rules. A) Reduction
from1429 to 49 unique patterns. B) Rule set to compress repeating find, open, and close behavior. C) Resulting
traffic after rewriting.
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CryptX

For the analysis of Cryptxwe start with the rule set as constructed for the Jigsaw virus (Figure
7.7A). Inspection of the line diagram shows that read/write bursts started between 20:19 and
20:35. In contrast to Jigsaw we do not see delete requests.

After applying the rules, the icicle plot shows that for some Samba packets multiple rules
applied at the same time (Figure 7.12A). Closer inspection in Wireshark showed that these
packets consisted ofmultiple Samba headers (Figure 7.12B). Figure 7.12C shows examples of
compound requests that represent the opening of a directory andٽnding lesٽ in that directory
encoded in one packet.

Figure 7.12: A) The icicle plot shows that some CryptX packets are both Open and Find requests. B) Inspection
with Wireshark. The minimap (C) and line chart (D) show that compound requests are sent before directory
traversal and outside the encryption phase. E) Grouping the traffic by smb2.filename shows that files are
overwritten. F) During encryption files are opened and closed sequentially.

Compound Samba requests in general are valid with respect to the protocol speciٽcation as
they have been introduced for eٹciency reasons. There are however known bugs in practice
with these constructs [36–38]. In addition, Samba intrusion detectors without DPI may
actually be unaware of multiple headers in Samba traٹc. The evaluation of viruses that use
compound requests to masque leٽ reads and writes in practice is left for future work. After
searching for compound requests in the data the line chart shows that these commands were
sent at the start and end of the burst period (Figure 7.12D).

To study the overall duration of sequences, users can enable an arc diagram. This will draw
an arc from the start to the end of every sequence (Figure 7.12D).The larger arcs correspond
to the opening and closure of directories whereas the small arcs correspond to leٽ access.

Grouping the traٹc by smb2.file_name shows that repeated read andwrite activity only
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Figure 7.13: Studying sequential Cryptx file access patterns (A). B) Example of a recursive directory scan before
encryption C) Wireshark detailed view. D) Detailed overview patterns E) Tabular view shows files are accessed
alphabetically.

happened during the burst period (Figure 7.12E). Zooming in on the line chart shows smaller
arcs indicating that lesٽ were opened and closed in short periods in time (Figure 7.12F).
Inspection of the burst period in theminimap shows that the burst consists of a large number
of ndٽ requests followed by repetitive leٽ read and write patterns (Figure 7.13). The ndٽ
requests in Wireshark show that the virus, in contrast to Jigsaw, rstٽ recursively searches
directories for lesٽ before the encryption burst starts (Figure 7.13A). Inspection of the burst
shows that lesٽ are encrypted sequentially (Figure 7.13D) and are traversed alphabetically
(Figure 7.13E).

7.5.5. University Traffic

We studied the patterns in the ransomware samples and compared them to recorded traf-
cٽ from a university that has been struck earlier by ransomware. The main question was
whether there was still ransomware activity inside the network.

For the analysis of university traٹc we recorded internal network traٹc of 20 hosts over a
period of a month. Out of this 94GB of traٹc we extracted all smb2 meta-data using the
tshark protocol dissector. This results in the analysis of approximately 14,000,000 packets
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Figure 7.14: A) Access patterns to Microsoft Policy files (C). B) Access patterns of a user backup (D). Note that
files are accessed in parallel (not sequentially). E) Policy files are accessed onmultiple periods in time. The line
chart shows patterns on a logarithmic scale. F) Backup burst happened on January 22nd.

with over 100 protocol .eldsٽ In order to reduce the large packet count, response values
were merged in the corresponding requests based on their smb2.msg_id and session. In
addition, leٽ access to print services such as spoolss were excluded from the analysis.

We initially study the traٹc by loading the rule set that we constructed with the ransomware
analysis. The line chart in Figure 7.14 shows the presence of a traٹc burst on January 22nd
(Figure 7.14F). Grouping the traٹc by smb2.sesid and inspecting the traٹc shows that a
user is reading lesٽ from his backup directory (Figure 7.14D). In contrast to the ransomware
viruses, we can see that Open and Close packets are not alternating, but happen in bursts
showing that in the university traٹc lesٽ are accessed in parallel rather than sequentially.
Figure 7.14A also shows this for traٹc outside the traٹc burst.

Figure 7.15: Searching for Cryptx virus in University traffic. A) Search query for compound requests. B) Discov-
ery of compound requests. C) Requests are originating fromone source. D) All blocks accessMicrosoftNetwork
Policy files.
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To check for signs of the Cryptx virus we start searching for compound requests using Event-
pad’s ndٽ dialog (Figure 7.15A). This revealed a burst of Open-Find compound requests
similar to Cryptx (Figure 7.15B). The main diٶerence was that lesٽ after the burst were only
read. Inspecting the Attribute view shows that all compound requests were sent after the
burst by the same IP address (Figure 7.15C). Inspection of the leٽ names revealed that they
were all related to the reading of Microsoft Network Policy lesٽ (Figure 7.15D).

To study the access patterns to these lesٽ in greater detail, we search for all packets that
involve policy .lesٽ Figure 7.14A highlights the packets as a result of the search. Figure
7.14E shows that the pattern occurred several times in the data set. Filtering out the rest of
the traٹc, we can see that these policy lesٽ have similar access patterns (Figure 7.16A).

Although the reading of Microsoft Network Policy lesٽ is necessary to determine authoriza-
tion, we know that the hosts involved in the recording are not authorized to change these
policies. To verify this hypothesis, we search for conversations containing write requests
(Figure 7.16A). Grouping the traٹc by ip.src shows that several IP addresses that were
violating this constraint (Figure 7.16B). Figure 7.16D shows that these users were modifying
RemoteInstall, Logoff scripts and Registry lesٽ to gain access to the share from
a virtual machine.

Figure 7.16: Extraction of policy files. A) Overview policy access patterns B) Searching for file modification
requests and grouping the traffic by ip.src. Discovery of unauthorized IP addresses modifying policy files.
C) File modification happened throughout January.

7.6. Discussion

The use cases illustrate how we can use Eventpad to quickly gain insight in user activity by
analyzing leٽ access behavior in PCAP traٹc. Users are enabled to simplify, focus on, and
detect patterns inside network conversations by deٽning rules. Automated techniques in
turn use the labeling to assist users in discovering patterns between diٶerent conversations.
Inspection of packet attributes enables users to see whether these patterns share overlap in
other attributes after which rulesets can be reٽned. There are several reasons for the rapid
discovery of patterns in Eventpad:
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• Constructed rules sets are eٹcient to evaluate as they are based on regular expressions.
• Users do not need to have a full speciٽcation of what “good or bad” behavior looks
like, but can incrementally obtain results by visually encoding knowledge that they
have about their data.

• Unsupervised automatedmethods in the background use the constructed rules sets to
provide nontrivial insights.

Besides the creation of traditional black or whitelisting signatures, analysts create rules to
assist them discovering unknown patterns and focusing on parts that are relevant for their
investigation. The constructed rule set can be evaluated fully automatically on new (incom-
ing) data. By saving and loading rulesets analysts can quickly verify the presence of malware
in other data sets.

Although the tool quickly enables analysts to isolate areas of interest in large network sam-
ples, there are threats to validity. First, we analyzed ransomware activity by extracting leٽ
access behavior from network traٹc. Ransomware viruses that do not focus on repeated
(network) leٽ encryption (e.g., UIWIX [307]) cannot be detected with this approach. Al-
though Eventpad in general works on any event data, other data sources are required to
make the technique useful for these types of malware.

Second, based on the Samba signaling alonewe cannot distinguish between user-initiated leٽ
encryption versus ransomware encryption. Although the patterns in the use cases showed
clear diٶerences between ransomware and university traٹc (sequential versus parallel activ-
ity), this does not hold in general. Additional (automated) anomaly techniques are required
to verify if the observed patterns indeed correspond to leٽ encryption.

Third, the Eventpad system suٶers from a “cold start” problem in the sense that users must
already be aware of properties that are of interest. Naively applying clustering or alignment
without a rule set results in no insights (underٽtting) whereas creating too many rules can
results into “noisy” patterns (overٽtting). Also to deal with phenomena such a concept drift
[309], rulesets need to be maintained by users to ensure the discovery of new viruses in the
future.

7.7. Conclusions and Future work

In this chapter we demonstrated a visualization tool to support rapid and cost-eٶective anal-
ysis of network traٹc analysis and malware activity. We have shown the eٶectiveness of the
system in real-world ransomware and oٹce traٹc. Our tool shows how visualization can be
used to quickly gain insight in malware and network activity by combining data reduction
and automated techniques in one interface using rules, aggregations, and selections.

Future workwill consist of integratingMülders automated network detection techniquewith
the Eventpad system. In addition, the Eventpad system will be expanded to make real-time
monitoring of network traٹc and evaluation of temporal constraints feasible.
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8.1. Overview

D uring the design of the prototypes and application of the systems in practice, we have
gained new insights on how to discover patterns and anomalies in large event collec-

tions. In the next paragraphs we brieپy summarize the conclusions of the previous chapters
and discuss the strengths of each system, all aiming at answering our research question:

“How can we use interactive visualization techniques and automated methods to discover
relevant patterns in large event collections?”

In Section 8.2, we elaborate further on our research question by reپecting on our contribu-
tions and providing guidelines for the eٶective use of automated techniques and visualiza-
tion of multivariate event logs. Finally, suggestions for future work and nalٽ conclusions are
provided in Section 8.3.

!
SNAPS: Monitoring Multivariate Event Collections In
Chapter 3 we presented a novel approach for domain experts
to discover anomalies in network traٹc by combining Deep
Packet Inspection, machine learning and visualization into one coherent system. The ability
to create multiple selections in parallel enable experts to drill down or to focus on speciٽc
entities, while still maintaining an overview of the state in the network. The Time view en-
ables experts to detect patterns and trends over time, while the Pixel, Attribute and Lens view
enable experts to detect outliers. Furthermore, the ability to train and reٽne classiٽers on
multiple selections of interest makes the approach exibleپ enough to be optimized for very
speciٽc environments. We have shown the eٶectiveness of SNAPS on two real-world data
sets. Since the approach only relies on the structure of parse data in general, the proposed
method is suitable for application in other domains.

!CoNTA: Contextual analysis of Anomalous Events Chap-
ter 4 presented a novel approach for domain experts to explore
large message collections using interaction and automatically
generated alerts. The ability to interactively switch from traٹc-level overviews to message-
level details enables experts to investigate the relationships between high-level traٹc phe-
nomena and low-level message ,eldsٽ while staying aware of other concepts, such as con-
versations and sequential patterns. The combination of attribute-based scented widgets and
selection-based relevance metrics enables experts to search through large attribute collec-
tions and reٽne classiٽcation results in multiple dimensions. Since the methodology ex-
hibits the structure of time-dependent multivariate data, it is general and exibleپ enough to
be applied in other domains.

!
Eventpad: Multivariate Collective Anomaly Exploration
In Chapter 5 we focused on the design of a novel approach for
analysts to explore multivariate event sequence data by com-
bining attribute and sequential analysis into one uniٽed system. The ability to interactively
encode event logs by coalescing event sequences according to rules enables analysts to incor-
porate their knowledge of the data and test whether the patterns match their expectations.

The combination of attribute-based scented widgets and pattern aggregations enables ana-
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lysts to discover new attributes of interest and reٽne rules based on their new ,ndingsٽ while
staying aware of high-level patterns across diٶerent levels of abstractions. We have shown
the eٶectiveness of the approach on real-world data sets through interactive sessions with
external companies and elaborate examples. Since the methodology makes no underlying
assumptions on sequential data, it is general and exibleپ enough to be used in other domains.

!
Hypothesis Testing & Generation inWildlife traffic Chap-
ter 6 presented a case study where we have shown the eٶec-
tiveness of Eventpad to quickly gain insight in the VAST 2017
Mini Challenge 1 data set. We started explorationwith the construction of hypotheses to rea-
son about desired and undesired behavior after which they were veriٽed during exploration
of the data.

Using rules, aggregations, and selections, we discovered that vehicles on certain roads drive
too fast and enter locations in the middle of the night for which they are not authorized. In
addition, the presence of systematic travel activity across the entire preserve during high-
season can also disturb the wildlife in Lekagul.

RapidReverseengineeringofMalwareBehavior InChap-
ter 7 we combined temporal analysis techniques fromChapter
4 with the Eventpad system to enable rapid and cost-eٶective
analysis of network traٹc analysis and malware activity. We have shown the eٶectiveness of
the system in real-world ransomware and oٹce traٹc. Our tool shows how visualization can
be used to quickly gain insight inmalware and network activity by combining data reduction
and automated techniques in one highly interactive interface using rules, aggregations, and
selections.

8.2. Reflections

Over the years we have demonstrated the systems at diٶerent companies (e.g., KPN, ASML,
Philips,Motto communications) and security conferences includingVizSec [322], StillHack-
ing Anyway [273], and Black Hat USA [29]. Application of the systems in practice and
interaction with network engineers gave us valuable insights with respect to the design of
cybersecurity visualizations. In this section we summarize our ndingsٽ and reپect on the
lessons learned.

8.2.1. System components & Integration

In practice there is no security technique that is able to detect all possible attacks. Every tool
has its pros and cons and this is something that we have to accept. To this end we do not
propose yet another uniٽed framework for the exploration for security data or event logs,
but focus on the visual components and paradigms that turned out to be most eٶective in
each prototype (also illustrated in Figure 8.1).
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Dynamic Querying

Interaction

ContextTemporal

Textual Querying

Conditional Formatting

SNAPS (Chapter 3) CoNTA (Chapter 4)

Eventpad (Chapter 5)

Figure 8.1: An overview of the components that were considered valuable in security visual analytics proto-
types of Chapters 3, 4, and 5.

• Context: Although all prototypes were designed to detect a speciٽc class of anoma-
lies, some techniques have shown to be also relevant for the detection of other classes.
In SNAPS we discovered that the application of a classiٽer on subsets of the data can
greatly inپuence the resulting outcome. The Context view (red square, Figure 8.1) en-
abled users to quickly inspect data subsets by storing selections of interests through-
out exploration. Combined with the classiٽers in SNAPS and CoNTA, and the data
operations in Eventpad, users were enabled to quickly analyze the data from diٶer-
ent perspectives. In Chapter 2 context has shown to be important in the detection of
anomalies and therefore played a crucial role in all three prototypes.

• Conditional formatting: Conditional formatting refers to the visual encoding of val-
ues and data collections according to user-deٽned conditions of interest. The SNAPS
system enabled users to assign colors to values of interest and highlight these in the
pixel visualization. In contrast to knowledge-based intrusion detection models, the
rules enable users to discover new patterns in the visualization. This already showed
an application where rules were not used to detect known attack patterns automati-
cally, but to assist the user in discovering unknown patterns using visualization. In
Eventpad conditional formatting became the main building block for the exploration
and analysis of collective anomalies. Here we extended the technique from coloring
values to the conditional coloring of sequences using regular expressions.

• Dynamic Querying & Textual Querying: Despite the preference of security analysts
and Linux users to use Command-Line Interfaces (CLIs) over Graphical User Inter-
faces (GUI’s) [136, 143], dynamic querying using sliders and scented widgets [333]
was well received during demonstration of the systems. The creation of selections
of interests in CoNTA and Eventpad enabled faster inspection of overlap in multiple
attributes compared to command-line based queries. For the lteringٽ of data with
Boolean expressions, a traditional textual interface seemed more appropriate. In all
prototypes dynamic querying and textual querying were provided to obtain the best
from both worlds.

• Temporal analysis: In network monitoring, the detection of bursts and drops in net-
work activity is often used as an indicator to determine the severity of changes in the
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network. Many security threats such as Distributed Denial Of Service attacks (DDOS
[220]), ransomware [219], DNS poisoning [308], but also the malfunction of hard-
ware components [60] can be related to bursts and drops in network values over time.
Similar to systems such as Grafana [123], VoipMonitor [282], and Kibana [127], we
also believe that line charts are still valuable to study trends in this type of data.

• Interaction: In all systems interaction plays an important role as the amount of data is
huge and the interest of the user has to be taken into account. Direct manipulation
on graphical elements such as blocks, sliders, and diagrams enables users to instantly
query data and obtain new insights. Combined with the creation of selections of inter-
est and linking & brushing, nontrivial relationships can be discovered across multiple
data views.

SNAPS enables direct manipulation by creating selections of interest in the pixel visu-
alization and inspecting these using an interactive lens. Similar to Van der Corput et
al. [318], Van den Elzen et al. [314], and many other modern systems for information
visualization, CoNTA uses small multiples and scented widgets to enable the analysis
of multivariate data in large collections of attributes. The multivariate regular expres-
sions in Eventpad enable users to search, highlight, and deٽne new patterns using a
visual query interface.

We have also tried to use interaction to steer automated techniques in diٶerent ways.
In SNAPS and CoNTA we retrained the classiٽer by interactively excluding values,
ranges, or whole attributes from the data set. However, in practice we noticed that
the eٶect on the classiٽer after applying on subsets of the data was sometimes hard
to predict. In Eventpad we did not use a classiٽcation technique, but tried to steer
automated techniques by deٽning similarity functions according to human labeling.

The development of SNAPS and CoNTA lead to valuable insights for the design of Eventpad.
Although each system was designed to cover a particular class of anomaly (as illustrated
in Chapter 1 Figure 1.3), we don’t believe that the systems together should be considered
as the full end solution to the research question. The introduction of user-centered rule
generation in Eventpad opens a new perspective on how to analyze anomalies in event logs.
As a consequence, we believe that the SNAPS and CoNTA prototype can also beneٽt from
the techniques that were designed for Eventpad. Possibilities for future work are discussed
in Section 8.3.

8.2.2. Eventpad: Interpretability in Security Visualization?

There are possible explanations for the success of Eventpad. We believe that they are related
to the expressiveness, interpretability, and general character of the system. The visual one-
to-one mapping of log records to blocks is relatively easy to comprehend and enables user
to reason about every record individually without having to think about predeٽned aggre-
gations or complex visual encodings. In addition, the visual encoding is widely applicable
as it does not make any assumptions about the multivariate data attached to the records.
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Thedata operations deٽned in Chapter 2 Figure 2.14 enable users to apply conceptually sim-
ple yet powerful transformations to data collections. In contrast to complex black-box pro-
cessing in general, these operations are atomic, comprehensible, chainable, and reversible.
Every operation is manually veriٽable and again results in the same visual representation.
We believe that the operations give the user control and help them assist in verifying the
importance of observations based on the steps they took throughout exploration. The idea
of systematically rewriting data using rules also tsٽ in this paradigm.

The introduction of regular expressions to support the data operations such as grouping,
deletion, and insertion of data points has already proven to be useful in the text editing
domain. Although patterns as deٽned by regular expressions are rather basic (e.g., do not
incorporate time), they are well known in the computer science community and relatively
easy to reason about conceptually. The ability to capture knowledge in new concepts and to
re-use them in other exploration tasks enables users to communicate results to other team
members.

We believe that the positive reception of Eventpad is closely related to the popularity of pivot
tables in Excel. Pivot tables enable rapid analysis (e.g., sorting, counting, grouping) of tab-
ular records without having to setup anything. It is quick, understandable, and capable to
workwith (almost) any type of structured data. In addition, functionality to assist in the con-
version to CSV data and import/export results to other systems such as Wireshark enables
people from other domains to use the software quicker.

8.2.3. A hybrid model for Network Intrusion Detection

In Chapter 2 we discussed diٶerent intrusion detection models for the detection of threats
in cybersecurity. In general we know that

• Knowledge-based detection in general is fast in pattern recognition, but ineٶective for
the detection of unknown attacks (e.g., APTs and zero-days);

• Behavioral-based anomaly detection techniques are able to discover unknown attacks,
but are sensitive to high false positive rates due to model overٽtting [293];

• Speciٽcation-based techniques enable both the discovery of known and unknown at-
tacks according to some expectancy model. The construction of a full system speciٽ-
cation in practice however is often tedious and diٹcult.

Each technique has its pros and cons, we found that in practice they are all indispensable
and should be used together. For the detection of APTs, the SNAPS and CoNTA systems
followed a behavioral-based anomaly detection approach, since the visualizations and clas-
siٽcation models use historical records to discover deviations in the network according to
some baseline (instead of relying on known attack patterns). The Eventpad system however
is more diٹcult to classify in one of these categories.

The regular expressions in Eventpad enable users to look for known patterns of interest sim-
ilar to knowledge-based systems such as Snort [21]. However, the rules also enable users to
visually encode properties that are of interest for the discovery of unknown patterns. Similar
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Figure 8.2: Eventpad is an example of a system where visualization and interaction are used to combine the
strengths of multiple network intrusion detection approaches. Eventpad enables analysts to simplify event
sequencesby incrementally replacingblock sequencesusing rules. Comparisonbetweenexecution sequences
is achieved by applying clustering and alignment techniques to the rewritten data. Inspection of attributes
in overlapping sequences enables analysts to identify (un)desired behavior in the traffic. New insights can
directly be incorporated in the analysis by defining new rules throughout exploration.

to behavioral-based intrusion detection, the severity of observed patterns can be assessed by
comparing these to frequent or baseline behavior as suggested by clustering and alignment
techniques. The incremental rewriting of event patterns enables users to visually separate
desired and undesired sequences in the visualization according to their model of expecta-
tion. Even when analysts only have a partial speciٽcation of what desired behavior repre-
sents, interactive visualization enables users to incrementally obtain a better understanding
of the data. In contrast to pure speciٽcation-based intrusion detection techniques, full sys-
tem speciٽcations are not required to gain insights. We believe that the success of Eventpad
is related to its exibilityپ as the system does not try follow one these models, but aims to
combine them (also illustrated in Figure 8.2).

The system shows that the role of visualization should not only be considered as a new tech-
nique to discover intrusions, but also as ameans to bridge the gap between existing intrusion
detection methodologies.

8.2.4. Automatic support: overview first, explanations on demand?

When we rstٽ applied the SNAPS system to real-world network traٹc, we had initially no
knowledge about good and bad behavior. When the rstٽ pixels started to light up, it was
diٹcult to assess the severity of an alert by looking at its details. Inspection of regular traٹc
was necessary to put the alert in context. During the design of our prototypes we started to
use automatic methods in diٶerent ways to explain occurrences of events.

The SNAPS and CoNTA systems in Chapters 3 and 4 followed an algorithm-centered ap-
proach where we considered the output of automatic methods as an input source for the
visualization. In this top-down approach, we started with an overview of generated alerts
while trying to ndٽ explanations of observed patterns in these collections. In SNAPS we
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followed amore traditional security visualization approach where we generated an overview
by statically visually encoding the alert data in one image, whereas in CoNTA we decided to
alter the type of visualization depending on the task of interest. Although we were able to
ndٽ explanations in the alerts by comparing them to normal traٹc, sometimes it was still
unclear why the classiٽer generated the alerts in the rstٽ place despite the simplicity of the
model.

With Eventpad we took a diٶerent approach, where we enabled bottom-up discovery of
anomalies by starting with user-deٽned patterns of interest. In this user-centered approach,
analysts are enabled to ndٽ undesired or unexpected behavior by searching for deviations in
patterns they expect to see in the network. Here automated techniques are used to assist the
user in discovering new patterns and anomalies by starting from the context he deٽnes.

Both algorithm-centered and user-centered approaches have advantages and disadvantages.
Algorithm-centered support in general is easier to use in practice as it requires little domain
knowledge from the user to discover anomalies and areas of interest. Assessing the relevance
of an alert, however, can become diٹcult as it may require to ndٽ an explanation for the
outcome of the underlying classiٽcation model.

Human-centered support assumes that the end user has knowledge about desired and un-
desired behavior. Automatic techniques in turn can use this knowledge to provide better
context-sensitive insights in the area of interest. Although this level of awareness can be
assumed for security analysts in Computer Emergency Response Teams and Security Oper-
ations Centers, users without any background knowledge may suٶer from a cold-start prob-
lem. In addition, human-centered exploration can end in a local optimumas the search space
of all possible contexts to inspect the data is biased towards the interests of the user. In the
end we believe that both approaches can lead to valuable insights in the data and therefore
should both be considered for the analysis of event collections.

8.2.5. Security starts with understanding

Network protocols nowadays are very complex. The RFC manual of a protocol such as SIP
[266] has over 250 pages out of which at least 30% are describing exceptional cases. Over
the years functionality has been added to and removed from protocol speciٽcations that
writing dissectors for them is tedious and error-prone. Ambiguities or unspeciٽed behavior
in speciٽcations can be the source of a new vulnerability that can be exploited by targeted
attacks. Similar to Etalle et al. [92], we believe that the high false positive rates of intrusion
detection systems aremore related to the complexity of network traٹc rather than the quality
of the detection techniques.

In principle, it is always possible to inٽltrate a system, provided that the attacker has suٹ-
cient resources in terms of hardware, funding, time, and knowledge. The only thing that we
can do is trying to raise the bar to make it less attractive for the attacker to inٽltrate the en-
vironment. This also holds for the detection of targeted attacks. Although it is impossible to
guarantee a 100% protection, we can increase the diٹculty of being inٽltrated by developing
new techniques to inspect, assess, and most importantly trying to simplify our network traf-
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.cٽ Similar to software standards, we believe that protocols should be indivisible, concise,
and not subject to changes over time. API changes should only be accepted if the probability
of someone exploiting the incompatibility as a result of the change is zero. Tulach refers to
this paradigm as the “99 percent backward compatible API” [310].

8.2.6. Recommendations for building security tools

In this dissertation we have had successes and failures with respect to the deployment of our
systems in practice. The Eventpad systemwas well received by companies and communities,
whereas the SNAPS and CoNTA were less successful. We believe that in order for a security
visualization tool to become of interest in practice, the following aspects need to be taken
into account:

• Integration&Transparency: Besides discovering threats, cybersecurity teams also have
the responsibility to justify decisions whenever actions have to be made. Especially
with GDPR regulations [30], this is becoming more and more important. Over the
years these teams have built their own complex platforms by combining (often open-
source) frameworks in one environment. They are not interested in yet another black-
box platform that will solve all their problems. Tools need to be integrateable and
results need to be explainable. The SNAPS and CoNTA systems were already consid-
ered monolithic in the sense that import and export functionality was rather limited
and alerts were sometimes still diٹcult to grasp. The Eventpad system provided bet-
ter import and export functionality of rules and data to more universal formats and
standards such as Comma Separated Values. In addition, the steps in the visualiza-
tion after applying data operations such as clustering and alignment were easier to
comprehend and verify compared to SNAPS and CoNTA.

• Terminal support The security community in general is rather skeptical on the use of
graphical user interfaces [285, 297]. Command-Line Interfaces (CLI) enable:

– faster execution since one does not have to look for or navigate to buttons on a
screen;

– easier repetition and history tracking, since CLIs store records of the executed
commands;

– fast input/output chaining (In Unix also referred to as “piping”);
– scripting/automation of user tasks such as clicking a sequence of buttons.

In order to overcome limitations of graphical user interfaces, security tools should
provide command-line functionality or provide fast interactionmechanism to support
these features. In all three prototypes we enabled users to lterٽ and export selections
using a query interface similar to Wireshark [63]. Import and export functionality
of rules in Eventpad enabled analysts to construct rules outside of the prototype. In
addition, compatibility with open standards of STIX, TAXII and CybOX [320] can
also increase the utility of the tool in practice.

• Expressiveness over :exibilityܧ In Chapter 2 we saw that security visualizations in the
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Figure 8.3: a) Eventpad canbe extendedwith temporal constraints by defining constraints at the level of hosts,
sequences, and events. b) Possible extension of the query language to support temporal constraints. The top-
most query enforces conditional formatting over sequences of events. The other queries are three examples to
enforce the time between events to be less than 30 seconds. ?a and ?b are unbound variables whose values
are evaluated during the matching.

beginning were often focused towards a certain task or question, like: “show me de-
viations in port activity” or “show me where all alerts are located in the network”. As
a result the main view of the visualization is often xedٽ according to the predeٽned
question of interest. In Chapter 4 however we saw that the workپow of digital foren-
sics is not limited to a single question.

We believe that a tool needs to support all basic data operations such as grouping,
sorting, and lteringٽ as deٽned in Chapter 2 in an eٶective and eٹcient way. This
enables users to express their goal, quickly drill down, and verify their hypotheses
on diٶerent subsets of the data without preprocessing the data .rstٽ Although SIEM
dashboards oٶer a wide range of tools to visualize event collections, they often provide
little functionality tomanipulate the data interactively, making themunsuitable for in-
depth data exploration.

8.3. Future work

Cybersecurity is a dynamic eldٽ where new techniques have to be developed continuously in
order to counteract future cyberthreats. Although we have discovered novel ways to interact
with network traٹc and apply automated methods, there is still much to be done. Based on
the feedback we received from industry and the suggestions for future work in the previous
chapters, we believe there are several directions for future work with respect to the temporal
analysis, comparison, and interaction of multivariate event log visualizations.

• Temporal analysis: The Eventpad system enables users to discover sequential patterns in
event collections by ignoring the time between events. In both the security and health-
care domain however, the absolute time of occurrence and relative time between events
can tell much about the type of attack or the patient’s symptoms as a result of bad medi-
cation [263]. Although Eventpad has been extended to enable temporal analysis of rule
invocations, this only solves the problem partly. Similar to EventFlow, users also want to
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be enabled to impose timing constraints in the query language [223]. Figure 8.3 shows
how the query language can be visually extended to support the speciٽcation of the con-
straints. The extension of the underlying regular expression model however is nontrivial
as it may require backtracking to support the validation of temporal constraints.

• Event log comparison: In the SNAPS prototype we discovered that critical infrastructures
showed repetitive behavior in event collections over time. An interesting topic for future
work would be to analyze how snapshots of event collections change over time when
recording the traٹc at xedٽ intervals. Similar to Van den Elzen et al. [313], one idea
would be to reduce event collections to two-dimensional points in space using dimen-
sionality reduction techniques [106] and study evolutionary patterns in the event logs as
a result of an attack.

• Exploration of text-oriented and process-mining algorithms: The visualization approach in
Eventpad enables us to apply text-oriented techniques such as regular expression search-
ing to multivariate event logs. In addition, process-mining also provides a scala of al-
gorithms [176, 315, 317], besides multiple sequence alignment, to discover patterns in
multivariate event sequences automatically. Although such techniques in general are
computationally intensive, quick results on data selections can be obtained through user
interaction. The text analysis domain also oٶers a wide variety of algorithms that could
be used in Eventpad. Interesting future work would be to see how we can for instance
compare event collections using textdiff [334] algorithms that are used in version
control systems such as Git [306], or other text searching algorithms such as tf-idf
[259] when deٽning words interactively using the Eventpad rules.

• Heterogeneous data analysis: In this dissertation we mainly focused on the analysis of
event logs and implicitly assumed that the domain knowledge of the network analyst can
provide enough context about the environment. In practice, however, this user experi-
ence is often obtained by analyzing diٶerent sources of information. Tweets on the web,
news reports, camera surveillance videos, and sometimes even weather forecastings are
analyzed to ndٽ explanations in computer networks. Although a wide variety of tech-
niques have been proposed to visualize data sources individually, the development of a
consistent and concise interaction mechanism between these views is challenging [269].

• Multi-user interaction: Incident response teams often have to work closely together when
trying to resolve a system breach. Communicating results in these hectic periods how-
ever is diٹcult. There is a need for Computer Emergency Response Teams (CERTs)
and Security Operations Centers (SOCs) to be able to communicate their ndingsٽ when
working on the same topic. This raises the question on how to enable multiple users to
interact with the same visualization simultaneously.
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8.4. In Conclusion

In this dissertation we have presented diٶerent techniques to combine visualization tech-
niques and automated methods for the discovery of patterns and anomalies in large event
collections. We have shown that visual analytics enables the discovery of application-level at-
tacks by combining interaction, visualization, and automated methods in coherent systems.
The SNAPS and CoNTA systems have shown that visualization can be eٶective to discover
patterns in automatically generated alert collections, whereas systems such as Eventpad en-
ables the discovery of user-driven patterns. We believe that visualization plays an important
role in the integration of diٶerent intrusion detection techniques and raising awareness in
the network. However, we also believe that the use of visualization only solves the detection
of targeted attacks partly. To better understand what is happening in computer networks, we
need to ndٽ ways to make networks and protocols less complex and better administrable.
Security through obscurity [141] is never a complete solution, security starts with under-
standing, and we hope to have contributed to that with our work.
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Summary

Interactive Visualization of Event Logs for Cybersecurity

I n our ever-growing world of interconnected devices and processes, the amount of datatransferred in these networks is exploding. With cybercrime as the number one threat
in our ICT society we need to understand how and for what purpose networks are used in
order to protect them frommisusage. The discovery of undesired behavior in environments
can help to detect and prevent cybercrime organizations from destroying and abusing our
infrastructures.

Many domains analyze network environments by logging their behavior in events. Exam-
ples are messages sent between mobile devices, medical treatments taken in a hospital, or
nancialٽ transactions paid with your credit card. The discovery of malicious patterns and
anomalies in real-world event data however is nontrivial as they often contain a wide vari-
ety of metadata depending on the domain. Fully automated anomaly detection techniques
suٶer from many errors in this high-dimensional data due to the lack of context whereas
manual analysis of this data is often unfeasible due to its size and variety.

In this dissertation we explore and present interactive visualization techniques to explain
and detect outliers (also known as anomalies) in large event collections. In particular, we
focus on the following research question:

How can we use interactive visualization techniques and automated methods to discover
relevant patterns and anomalies in large event collections?

We show howwe can combine visualization and automated techniques to support the explo-
ration and explanation of diٶerent classes of patterns and anomalies. For each of these classes
we introduce novel interaction and query mechanisms where we combine visualization with
automatic techniques from various domains including data-mining, process-mining, and
language engineering.

In Chapter 3 we present a novel explorationmethod on how to discover anomalous events by
converting the event metadata to a pixel visualization. Combined with an online classiٽer,
parts of themetadata are lit upwhenever events contain values that are classiٽed asmalicious.
Through interaction users are enabled to explore the validity of the metadata attribute space
and reٽne classiٽcation results where necessary.

When trying to assess the relevance of an anomaly, context plays an important role. For
instance, although the access of a leٽ X does not have to be malicious in general, it can be
considered dangerous when performed by a certain user. Theway we split our data therefore
determines the type of anomalies that we can discover. In Chapter 4 we present a system to
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inspect alert data from diٶerent perspectives. We show how visualization and interaction
can be used to enable analysts to discover high-level threats in a collection of low-level alert
collections.

Chapter 5 focuses on the analysis of anomalies in event sequences. In this chapter we present
a system called Eventpad that enables rapid and cost-eٶective discovery of patterns in event
collections by visualizing them as blocks on a screen. Rules enable users to highlight and
visual encode event properties that are of interest. Automated techniques such as clustering
and alignment in turn can use this labeling to discover patterns between event sequences.
Similar to a notepad editor, ndٽ & replace functionality and conditional formatting can be
used to quickly search and highlight outliers in the data.

In Chapters 6 and 7we show howwe can apply our techniques to discover illegal traٹc activ-
ity in a wildlife preserve and the analysis of ransomware activity. The use cases in Chapters
5 and 6 show that the problems and techniques described in the dissertation do not limit
themselves to the analysis of network traٹc for cybersecurity, but in general are applicable
to tabular data from any domain.



Samenvatting

Interactieve Visualisatie van Systeemgebeurtenissen voor Cybersecurity

I n onze samenleving worden steeds meer apparaten en processen met elkaar verbonden.De hoeveelheid informatie dat in deze netwerken wordt verstuurd is aan het exploderen.
Met cybercrime als de nummer 1 bedreiging in onze ICT samenleving moeten we begri-
jpen hoe en waarvoor onze netwerken worden gebruikt om enige vorm van misbruik te
voorkomen. De ontdekking van kwaadaardig gedrag kan bijvoorbeeld helpen bij het op-
sporen van cybercrime organisaties en het voorkomen van misbruik of zelfs vernietiging
van eigendommen.

Veel bedrijven en domeinen analyseren hun netwerkomgevingen door systeemgedrag in
gebeurtenissen op te slaan. Denk hierbij bijvoorbeeld aan het versturen van berichten tussen
mobiele telefoons, het opslaan vanmedische behandelingen in elektronische patientendossiers
en het bijhouden van nancieleٽ creditcard transacties. Het ontdekken van ongewenste pa-
tronen of gevaarlijke afwijkingen in dit soort data is in praktijk vaak moeilijk door de grote
variatie in deze gegevens. Daarnaast kunnen deze gegevens zwaar verschillen van domein
tot domein. Volledig automatische oplossingen maken vaak te veel fouten om kwaadaardig
gedrag in deze hoog-dimensionale data te vinden door gebrek aan context terwijl hand-
matige analyse van deze gegevens vaak onmogelijk is door de grootte en variatie.

In dit proefschrift introduceren en demonstreren we interactieve visualisatietechnieken om
in grote collecties gebeurtenissen patronen en afwijkingen (ookwel anomalieën genoemd)
te ontdekken. Hierin staat de volgende onderzoeksvraag centraal:

Hoe kunnen we interactieve visualisatie technieken en automatische methoden gebruiken
om relevante patronen en anomalieën te vinden in grote collecties gebeurtenissen?

In dit proefschrift laten we zien hoe we visualisatie en automatische technieken kunnen ge-
bruiken om verschillende typen patronen en afwijkingen te kunnen zoeken en verklaren.
Voor iedere type afwijking introduceren we nieuwe interactie-en zoekmechanismen door
visualisatie te combineren met automatische technieken uit verschillende domeinen zoals
data-mining, process-mining en language engineering.

In Hoofdstuk 3 presenteren we een nieuwe werkwijze om afwijkende gebeurtenissen te vin-
den door zogenaamde metadata uit gebeurtenissen te extraheren en deze om te zetten in
een pixel visualisatie. Met behulp van een online classiٽcatie algoritme worden delen van de
metadata automatisch opgelicht bij de ontdekking van kwaadaardige patronen. Doormiddel
van interactie kunnen gebruikers de relevantie van deze alarmen analyseren en waar nodig
het classiٽcatie algoritme afstellen.
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Om de ernst van een afwijking te bepalen, speelt context een belangrijke rol. Hoewel de
toegang tot een bestand X in het algemeen niet kwaadaardig hoeft te zijn, kan deze wel als
gevaarlijkworden beschouwd als dit door een bepaalde gebruikerwordt uitgevoerd. Het per-
spectief waarmee we naar de data kijken is dus bepalend voor het soort afwijkingen die we
kunnen ontdekken. InHoofdstuk 4 latenwe zien hoewe visualisatie en interactie kunnen ge-
bruiken om grote collecties automatisch geclassiٽceerde afwijkingen snel te verkennen door
de data vanuit verschillende invalshoeken te inspecteren. Hiermee kunnen we laten zien
we hoe we bedreigingen op netwerk niveau kunnen herleiden uit een collectie van abstracte
alarmen op gebeurtenis niveau.

Hoofdstuk 5 richt zich op de analyse van afwijkingen in reeksen van gebeurtenissen. In dit
hoofdstuk presenteren we een systeem genaamd Eventpad om snel en eٶectief patronen in
gebeurtenissen te vinden door deze te visualiseren als blokjes op een scherm. Met behulp van
regels kunnen gebruikers bepaalde eigenschappen in gebeurtenissen visueel benadrukken
om daarmee ongewenste patronen te ontdekken die relevant zijn voor hun onderzoek. Au-
tomatische methoden zoals clustering en alignment kunnen worden gebruikt om op basis
van deze visuele representatie patronen tussen gebeurtenisreeksen te ontdekken. Net als in
een tekstverwerker kunnen we ndٽ & replace functionaliteit en conditionele opmaak ge-
bruiken om snel afwijkingen te zoeken en in de data zichtbaar te maken.

In Hoofdstukken 6 en 7 laten we zien hoe we de nieuwe technieken kunnen gebuiken om
illegale verkeerspatronen in een natuurreservaat te ontdekken en snel ransomware activiteit
kunnen analyseren. De toepassingen van de systemen in Hoofdstukken 5 en 6 laat zien dat
de voorgestelde technieken zich niet beperken tot de analyse van netwerkverkeer, maar deze
ook kunnen worden gebruikt voor de analyse van tabelgegevens uit andere domeinen.
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Finding anomalies is not di�cult
The challenge is �nding the ones that matter

In our ever growing world of interconnected devices and processes, the amount 
of data transferred in these networks is exploding. With cybercrime as the number 
one threat in our ICT society we need to understand how and for what purpose 
networks are used in order to protect them from misusage. The discovery 
of undesired behavior in environments can help to detect and prevent cybercrime 
organizations from destroying and abusing our infrastructures.

In this dissertation we explore and present interactive visualization techniques 
to explore and detect outliers (also known as anomalies) in large event collections. 
In particular, we focus on the following research question:

We show how we can combine visualization and automated techniques to support
the exploration and explanation of di�erent classes of patterns and anomalies. 
For each of these classes we introduce novel interaction and query mechanisms 
where we combine visualization with automatic techniques from various domains 
including data-mining, process-mining, and language engineering.

How can we use interactive visualization techniques and automated methods 
to discover relevant patterns and anomalies in large event collections?
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